
perlintern - autogenerated documentation of purely Perl functions

This file is the autogenerated documentation of functions in the Perl interpreter that are documented
using Perl's internal documentation format but are not marked as part of the Perl API. In other words,

!

CvWEAKOUTSIDE

Each CV has a pointer, , to its lexically enclosing CV (if any). Because
pointers to anonymous sub prototypes are stored in pad slots, it is a possible to get a
circular reference, with the parent pointing to the child and vice-versa. To avoid the
ensuing memory leak, we do not increment the reference count of the CV pointed to by

in the that the parent has a pad slot pointing back
to us. In this case, we set the flag in the child. This allows us to
determine under what circumstances we should decrement the refcount of the parent
when freeing the child.

There is a further complication with non-closure anonymous subs (ie those that do not
refer to any lexicals outside that sub). In this case, the anonymous prototype is shared
rather than being cloned. This has the consequence that the parent may be freed while
there are still active children, eg

In this case, the BEGIN is freed immediately after execution since there are no active
references to it: the anon sub prototype has set since it's not a
closure, and $a points to the same CV, so it doesn't contribute to BEGIN's refcount
either. When $a is executed, the causes the chain of s to be
followed, and the freed BEGIN is accessed.

To avoid this, whenever a CV and its associated pad is freed, any entries in the pad
are explicitly removed from the pad, and if the refcount of the pointed-to anon sub is
still positive, then that child's is set to point to its grandparent. This will
only occur in the single specific case of a non-closure anon prototype having one or
more active references (such as above).

One other thing to consider is that a CV may be merely undefined rather than freed, eg
. In this case, its refcount may not have reached zero, but we still delete

its pad and its etc. Since various children may still have their
pointing at this undefined CV, we keep its own for the time being, so that
the chain of lexical scopes is unbroken. For example, the following should print 123:

CX_CURPAD_SAVE

Save the current pad in the given context block structure.

Perl version 5.8.6 documentation - perlintern

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

CV reference counts and CvOUTSIDE

Functions in file pad.h

internal

they are not for use in extensions

CvOUTSIDE()
&

CvOUTSIDE &
CvWEAKOUTSIDE

CvWEAKOUTSIDE

eval ’$x’ CvOUTSIDE

&

CvOUTSIDE

$a

undef &foo
CvROOT CvOUTSIDE

CvOUTSIDE

one specific instance

BEGIN { $a = sub { eval ’$x’ } }

my $x = 123;
sub tmp { sub { eval ’$x’ } }
my $a = tmp();
undef &tmp;
print $a->();

bool CvWEAKOUTSIDE(CV *cv)

void CX_CURPAD_SAVE(struct context)

CX_CURPAD_SV

Access the SV at offset po in the saved current pad in the given context block structure
(can be used as an lvalue).

PAD_BASE_SV

Get the value from slot in the base (DEPTH=1) pad of a padlist

PAD_CLONE_VARS

|CLONE_PARAMS* param Clone the state variables associated with running and
compiling pads.

PAD_COMPNAME_FLAGS

Return the flags for the current compiling pad name at offset . Assumes a valid slot
entry.

PAD_COMPNAME_GEN

The generation number of the name at offset in the current compiling pad (lvalue).
Note that is hijacked for this purpose.

PAD_COMPNAME_OURSTASH

Return the stash associated with an variable. Assumes the slot entry is a valid
lexical.

PAD_COMPNAME_PV

Return the name of the current compiling pad name at offset . Assumes a valid slot
entry.

PAD_COMPNAME_TYPE

Return the type (stash) of the current compiling pad name at offset . Must be a valid
name. Returns null if not typed.

PAD_DUP

Clone a padlist.

PAD_RESTORE_LOCAL

Restore the old pad saved into the local variable opad by PAD_SAVE_LOCAL()

Perl version 5.8.6 documentation - perlintern

Page 2http://perldoc.perl.org

SV * CX_CURPAD_SV(struct context, PADOFFSET po)

SV * PAD_BASE_SV (PADLIST padlist, PADOFFSET po)

void PAD_CLONE_VARS(PerlInterpreter *proto_perl \)

U32 PAD_COMPNAME_FLAGS(PADOFFSET po)

STRLEN PAD_COMPNAME_GEN(PADOFFSET po)

HV * PAD_COMPNAME_OURSTASH(PADOFFSET po)

char * PAD_COMPNAME_PV(PADOFFSET po)

HV * PAD_COMPNAME_TYPE(PADOFFSET po)

void PAD_DUP(PADLIST dstpad, PADLIST srcpad, CLONE_PARAMS*
param)

po

po

po
SvCUR

our
our

po

po

PAD_SAVE_LOCAL

Save the current pad to the local variable opad, then make the current pad equal to
npad

PAD_SAVE_SETNULLPAD

Save the current pad then set it to null.

PAD_SETSV

Set the slot at offset in the current pad to

PAD_SET_CUR

Set the current pad to be pad in the padlist, saving the previous current pad.

PAD_SET_CUR_NOSAVE

like PAD_SET_CUR, but without the save

PAD_SV

Get the value at offset in the current pad

PAD_SVl

Lightweight and lvalue version of . Get or set the value at offset in the
current pad. Unlike , does not print diagnostics with -DX. For internal use only.

SAVECLEARSV

Clear the pointed to pad value on scope exit. (ie the runtime action of 'my')

SAVECOMPPAD

save PL_comppad and PL_curpad

SAVEPADSV

Save a pad slot (used to restore after an iteration)

XXX DAPM it would make more sense to make the arg a PADOFFSET void
SAVEPADSV (PADOFFSET po)

Perl version 5.8.6 documentation - perlintern

Page 3http://perldoc.perl.org

void PAD_RESTORE_LOCAL(PAD *opad)

void PAD_SAVE_LOCAL(PAD *opad, PAD *npad)

void PAD_SAVE_SETNULLPAD()

SV * PAD_SETSV (PADOFFSET po, SV* sv)

void PAD_SET_CUR (PADLIST padlist, I32 n)

void PAD_SET_CUR_NOSAVE (PADLIST padlist, I32 n)

void PAD_SV (PADOFFSET po)

SV * PAD_SVl (PADOFFSET po)

void SAVECLEARSV (SV **svp)

void SAVECOMPPAD()

po sv

n

po

PAD_SV po
PAD_SV

find_runcv

Locate the CV corresponding to the currently executing sub or eval. If db_seqp is
non_null, skip CVs that are in the DB package and populate *db_seqp with the cop
sequence number at the point that the DB:: code was entered. (allows debuggers to
eval in the scope of the breakpoint rather than in in the scope of the debugger itself).

PL_DBsingle

When Perl is run in debugging mode, with the switch, this SV is a boolean which
indicates whether subs are being single-stepped. Single-stepping is automatically
turned on after every step. This is the C variable which corresponds to Perl's
$DB::single variable. See .

PL_DBsub

When Perl is run in debugging mode, with the switch, this GV contains the SV which
holds the name of the sub being debugged. This is the C variable which corresponds
to Perl's $DB::sub variable. See .

PL_DBtrace

Trace variable used when Perl is run in debugging mode, with the switch. This is the
C variable which corresponds to Perl's $DB::trace variable. See .

PL_dowarn

The C variable which corresponds to Perl's $^W warning variable.

PL_last_in_gv

The GV which was last used for a filehandle input operation. ()

PL_ofs_sv

The output field separator - in Perl space.

PL_rs

The input record separator - in Perl space.

is_gv_magical

Returns if given the name of a magical GV.

Perl version 5.8.6 documentation - perlintern

Page 4http://perldoc.perl.org

Functions in file pp_ctl.c

Global Variables

GV Functions

CV* find_runcv(U32 *db_seqp)

SV * PL_DBsingle

GV * PL_DBsub

SV * PL_DBtrace

bool PL_dowarn

GV* PL_last_in_gv

SV* PL_ofs_sv

SV* PL_rs

-d

-d

-d

PL_DBsub

PL_DBsingle

PL_DBsingle

<FH>

$,

$/

TRUE

Currently only useful internally when determining if a GV should be created even in
rvalue contexts.

is not used at present but available for future extension to allow selecting
particular classes of magical variable.

start_glob

Function called by to spawn a glob (or do the glob inside perl on VMS).
This code used to be inline, but now perl uses this glob starter is only
used by miniperl during the build process. Moving it away shrinks pp_hot.c; shrinking
pp_hot.c helps speed perl up.

CvPADLIST

CV's can have CvPADLIST(cv) set to point to an AV.

For these purposes "forms" are a kind-of CV, eval""s are too (except they're not
callable at will and are always thrown away after the eval"" is done executing).

XSUBs don't have CvPADLIST set - dXSTARG fetches values from PL_curpad, but
that is really the callers pad (a slot of which is allocated by every entersub).

The CvPADLIST AV has does not have AvREAL set, so REFCNT of component items
is managed "manual" (mostly in pad.c) rather than normal av.c rules. The items in the
AV are not SVs as for a normal AV, but other AVs:

0'th Entry of the CvPADLIST is an AV which represents the "names" or rather the
"static type information" for lexicals.

The CvDEPTH'th entry of CvPADLIST AV is an AV which is the stack frame at that
depth of recursion into the CV. The 0'th slot of a frame AV is an AV which is @_. other
entries are storage for variables and op targets.

During compilation: is set to the names AV. is set to
the frame AV for the frame CvDEPTH == 1. is set to the body of the frame
AV (i.e. AvARRAY(PL_comppad)).

During execution, and refer to the live frame of the currently
executing sub.

Iterating over the names AV iterates over all possible pad items. Pad slots that are
SVs_PADTMP (targets/GVs/constants) end up having &PL_sv_undef "names" (see
pad_alloc()).

Only my/our variable (SVs_PADMY/SVs_PADOUR) slots get valid names. The rest
are op targets/GVs/constants which are statically allocated or resolved at compile time.
These don't have names by which they can be looked up from Perl code at run time
through eval"" like my/our variables can be. Since they can't be looked up by "name"
but only by their index allocated at compile time (which is usually in PL_op->op_targ),
wasting a name SV for them doesn't make sense.

The SVs in the names AV have their PV being the name of the variable. NV+1..IV
inclusive is a range of cop_seq numbers for which the name is valid. For typed lexicals
name SV is SVt_PVMG and SvSTASH points at the type. For lexicals, the type is
SVt_PVGV, and GvSTASH points at the stash of the associated global (so that
duplicate delarations in the same package can be detected). SvCUR is
sometimes hijacked to store the generation number during compilation.

Perl version 5.8.6 documentation - perlintern

Page 5http://perldoc.perl.org

flags

do_readline
File::Glob

PL_comppad_name PL_comppad
PL_curpad

PL_comppad PL_curpad

our

our

bool is_gv_magical(char *name, STRLEN len, U32 flags)

PerlIO* start_glob(SV* pattern, IO *io)

IO Functions

Pad Data Structures

If SvFAKE is set on the name SV then slot in the frame AVs are a REFCNT'ed
references to a lexical from "outside". In this case, the name SV does not have a
cop_seq range, since it is in scope throughout.

If the 'name' is '&' the corresponding entry in frame AV is a CV representing a possible
closure. (SvFAKE and name of '&' is not a meaningful combination currently but could
become so if is implemented.)

The flag SVf_PADSTALE is cleared on lexicals each time the my() is executed, and
set on scope exit. This allows the 'Variable $x is not available' warning to be generated
in evals, such as

cv_clone

Clone a CV: make a new CV which points to the same code etc, but which has a
newly-created pad built by copying the prototype pad and capturing any outer lexicals.

cv_dump

dump the contents of a CV

do_dump_pad

Dump the contents of a padlist

intro_my

"Introduce" my variables to visible status.

pad_add_anon

Add an anon code entry to the current compiling pad

pad_add_name

Create a new name in the current pad at the specified offset. If is valid,
the name is for a typed lexical; set the name's stash to that value. If is
valid, it's an our lexical, set the name's GvSTASH to that value

Also, if the name is @.. or %.., create a new array or hash for that slot

If fake, it means we're cloning an existing entry

pad_alloc

Allocate a new my or tmp pad entry. For a my, simply push a null SV onto the end of
PL_comppad, but for a tmp, scan the pad from PL_padix upwards for a slot which has
no name and and no active value.

Perl version 5.8.6 documentation - perlintern

Page 6http://perldoc.perl.org

my sub foo {}

typestash
ourstash

{ my $x = 1; sub f { eval ’$x’} } f();

AV * CvPADLIST(CV *cv)

CV* cv_clone(CV* proto)

void cv_dump(CV *cv, char *title)

void do_dump_pad(I32 level, PerlIO *file, PADLIST *padlist, int
full)

U32 intro_my()

PADOFFSET pad_add_anon(SV* sv, OPCODE op_type)

PADOFFSET pad_add_name(char *name, HV* typestash, HV* ourstash,
bool clone)

pad_block_start

Update the pad compilation state variables on entry to a new block

pad_check_dup

Check for duplicate declarations: report any of: * a my in the current scope with the
same name; * an our (anywhere in the pad) with the same name and the same stash
as indicates that the name to check is an 'our' declaration

pad_findlex

Find a named lexical anywhere in a chain of nested pads. Add fake entries in the inner
pads if it's found in an outer one. innercv is the CV *inside* the chain of outer CVs to
be searched. If newoff is non-null, this is a run-time cloning: don't add fake entries, just
find the lexical and add a ref to it at newoff in the current pad.

pad_findmy

Given a lexical name, try to find its offset, first in the current pad, or failing that, in the
pads of any lexically enclosing subs (including the complications introduced by eval). If
the name is found in an outer pad, then a fake entry is added to the current pad.
Returns the offset in the current pad, or NOT_IN_PAD on failure.

pad_fixup_inner_anons

For any anon CVs in the pad, change CvOUTSIDE of that CV from old_cv to new_cv if
necessary. Needed when a newly-compiled CV has to be moved to a pre-existing CV
struct.

pad_free

Free the SV at offet po in the current pad.

pad_leavemy

Cleanup at end of scope during compilation: set the max seq number for lexicals in this
scope and warn of any lexicals that never got introduced.

pad_new

Create a new compiling padlist, saving and updating the various global vars at the
same time as creating the pad itself. The following flags can be OR'ed together:

Perl version 5.8.6 documentation - perlintern

Page 7http://perldoc.perl.org

PADOFFSET pad_alloc(I32 optype, U32 tmptype)

void pad_block_start(int full)

void pad_check_dup(char* name, bool is_our, HV* ourstash)

PADOFFSET pad_findlex(char* name, PADOFFSET newoff, CV*
innercv)

PADOFFSET pad_findmy(char* name)

void pad_fixup_inner_anons(PADLIST *padlist, CV *old_cv, CV
*new_cv)

void pad_free(PADOFFSET po)

void pad_leavemy()

padnew_CLONE this pad is for a cloned CV
padnew_SAVE save old globals

ourstash is_our

pad_push

Push a new pad frame onto the padlist, unless there's already a pad at this depth, in
which case don't bother creating a new one. If has_args is true, give the new pad an
@_ in slot zero.

pad_reset

Mark all the current temporaries for reuse

pad_setsv

Set the entry at offset po in the current pad to sv. Use the macro PAD_SETSV() rather
than calling this function directly.

pad_swipe

Abandon the tmp in the current pad at offset po and replace with a new one.

pad_tidy

Tidy up a pad after we've finished compiling it: * remove most stuff from the pads of
anonsub prototypes; * give it a @_; * mark tmps as such.

pad_undef

Free the padlist associated with a CV. If parts of it happen to be current, we null the
relevant PL_*pad* global vars so that we don't have any dangling references left. We
also repoint the CvOUTSIDE of any about-to-be-orphaned inner subs to the outer of
this cv.

(This function should really be called pad_free, but the name was already taken)

djSP

Declare Just . This is actually identical to , and declares a local copy of perl's
stack pointer, available via the macro. See . (Available for backward source code
compatibility with the old (Perl 5.005) thread model.)

LVRET

True if this op will be the return value of an lvalue subroutine

Perl version 5.8.6 documentation - perlintern

Page 8http://perldoc.perl.org

padnew_SAVESUB also save extra stuff for start of sub

PADLIST* pad_new(int flags)

void pad_push(PADLIST *padlist, int depth, int has_args)

void pad_reset()

void pad_setsv(PADOFFSET po, SV* sv)

void pad_swipe(PADOFFSET po, bool refadjust)

void pad_tidy(padtidy_type type)

void pad_undef(CV* cv)

djSP;

Stack Manipulation Macros

SP dSP
SP SP

report_uninit

Print appropriate "Use of uninitialized variable" warning

sv_add_arena

Given a chunk of memory, link it to the head of the list of arenas, and split it into a list
of free SVs.

sv_clean_all

Decrement the refcnt of each remaining SV, possibly triggering a cleanup. This
function may have to be called multiple times to free SVs which are in complex
self-referential hierarchies.

sv_clean_objs

Attempt to destroy all objects not yet freed

sv_free_arenas

Deallocate the memory used by all arenas. Note that all the individual SV heads and
bodies within the arenas must already have been freed.

The autodocumentation system was originally added to the Perl core by Benjamin Stuhl.
Documentation is by whoever was kind enough to document their functions.

perlguts(1), perlapi(1)

Perl version 5.8.6 documentation - perlintern

Page 9http://perldoc.perl.org

SV Manipulation Functions

AUTHORS

SEE ALSO

void report_uninit()

void sv_add_arena(char* ptr, U32 size, U32 flags)

I32 sv_clean_all()

void sv_clean_objs()

void sv_free_arenas()

