
perldsc - Perl Data Structures Cookbook

The single feature most sorely lacking in the Perl programming language prior to its 5.0 release was
complex data structures. Even without direct language support, some valiant programmers did
manage to emulate them, but it was hard work and not for the faint of heart. You could occasionally
get away with the notation borrowed from in which the keys are actually more like
a single concatenated string , but traversal and sorting were difficult. More desperate
programmers even hacked Perl's internal symbol table directly, a strategy that proved hard to develop
and maintain--to put it mildly.

The 5.0 release of Perl let us have complex data structures. You may now write something like this
and all of a sudden, you'd have an array with three dimensions!

Alas, however simple this may appear, underneath it's a much more elaborate construct than meets
the eye!

How do you print it out? Why can't you say just ? How do you sort it? How can you pass
it to a function or get one of these back from a function? Is it an object? Can you save it to disk to
read back later? How do you access whole rows or columns of that matrix? Do all the values have to
be numeric?

As you see, it's quite easy to become confused. While some small portion of the blame for this can be
attributed to the reference-based implementation, it's really more due to a lack of existing
documentation with examples designed for the beginner.

This document is meant to be a detailed but understandable treatment of the many different sorts of
data structures you might want to develop. It should also serve as a cookbook of examples. That way,
when you need to create one of these complex data structures, you can just pinch, pilfer, or purloin a
drop-in example from here.

Let's look at each of these possible constructs in detail. There are separate sections on each of the
following:

* arrays of arrays

* hashes of arrays

* arrays of hashes

* hashes of hashes

* more elaborate constructs

But for now, let's look at general issues common to all these types of data structures.

The most important thing to understand about all data structures in Perl -- including multidimensional
arrays--is that even though they might appear otherwise, Perl s and es are all internally
one-dimensional. They can hold only scalar values (meaning a string, number, or a reference). They

Perl version 5.8.6 documentation - perldsc

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

REFERENCES

$m{$AoA,$b}
"AoAb"

print @AoA

@ARRAY %HASH

awk

for $x (1 .. 10) {
for $y (1 .. 10) {

for $z (1 .. 10) {
$AoA[$x][$y][$z] =

$x ** $y + $z;
}

}
}

cannot directly contain other arrays or hashes, but instead contain to other arrays or
hashes.

You can't use a reference to an array or hash in quite the same way that you would a real array or
hash. For C or C++ programmers unused to distinguishing between arrays and pointers to the same,
this can be confusing. If so, just think of it as the difference between a structure and a pointer to a
structure.

You can (and should) read more about references in the perlref(1) man page. Briefly, references are
rather like pointers that know what they point to. (Objects are also a kind of reference, but we won't be
needing them right away--if ever.) This means that when you have something which looks to you like
an access to a two-or-more-dimensional array and/or hash, what's really going on is that the base
type is merely a one-dimensional entity that contains references to the next level. It's just that you can

it as though it were a two-dimensional one. This is actually the way almost all C multidimensional
arrays work as well.

Now, because the top level contains only references, if you try to print out your array in with a simple
print() function, you'll get something that doesn't look very nice, like this:

That's because Perl doesn't (ever) implicitly dereference your variables. If you want to get at the thing
a reference is referring to, then you have to do this yourself using either prefix typing indicators, like

, , , or else postfix pointer arrows, like , ,
or even .

The two most common mistakes made in constructing something like an array of arrays is either
accidentally counting the number of elements or else taking a reference to the same memory location
repeatedly. Here's the case where you just get the count instead of a nested array:

That's just the simple case of assigning an array to a scalar and getting its element count. If that's
what you really and truly want, then you might do well to consider being a tad more explicit about it,
like this:

Here's the case of taking a reference to the same memory location again and again:

Perl version 5.8.6 documentation - perldsc

Page 2http://perldoc.perl.org

references

use

$array[7][12] # array of arrays
$array[7]{string} # array of hashes
$hash{string}[7] # hash of arrays
$hash{string}{’another string’} # hash of hashes

@AoA = ([2, 3], [4, 5, 7], [0]);
print $AoA[1][2];

7
print @AoA;

ARRAY(0x83c38)ARRAY(0x8b194)ARRAY(0x8b1d0)

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = @array; # WRONG!

}

for $i (1..10) {
@array = somefunc($i);
$counts[$i] = scalar @array;

}

for $i (1..10) {

${$blah} @{$blah} @{$blah[$i]} $a->[3] $h->{fred}
$ob->method()->[3]

COMMON MISTAKES

So, what's the big problem with that? It looks right, doesn't it? After all, I just told you that you need an
array of references, so by golly, you've made me one!

Unfortunately, while this is true, it's still broken. All the references in @AoA refer to the
, and they will therefore all hold whatever was last in @array! It's similar to the problem

demonstrated in the following C program:

Which will print

The problem is that both and are pointers to the same location in memory! In C, you'd have to
remember to malloc() yourself some new memory. In Perl, you'll want to use the array constructor
or the hash constructor instead. Here's the right way to do the preceding broken code fragments:

The square brackets make a reference to a new array with a of what's in @array at the time of
the assignment. This is what you want.

Note that this will produce something similar, but it's much harder to read:

Is it the same? Well, maybe so--and maybe not. The subtle difference is that when you assign
something in square brackets, you know for sure it's always a brand new reference with a new of
the data. Something else could be going on in this new case with the dereference on
the left-hand-side of the assignment. It all depends on whether had been undefined to
start with, or whether it already contained a reference. If you had already populated @AoA with
references, as in

Then the assignment with the indirection on the left-hand-side would use the existing reference that
was already there:

Perl version 5.8.6 documentation - perldsc

Page 3http://perldoc.perl.org

@array = somefunc($i);
$AoA[$i] = \@array; # WRONG!

}

#include <pwd.h>
main() {

struct passwd *getpwnam(), *rp, *dp;
rp = getpwnam("root");
dp = getpwnam("daemon");

printf("daemon name is %s\nroot name is %s\n",
dp->pw_name, rp->pw_name);
}

daemon name is daemon
root name is daemon

for $i (1..10) {
@array = somefunc($i);
$AoA[$i] = [@array];

}

for $i (1..10) {
@array = 0 .. $i;
@{$AoA[$i]} = @array;

}

$AoA[3] = \@another_array;

very same
place

copy

copy

rp dp
[]

{}

@{$AoA[$i]}}
$AoA[$i]

Of course, this have the "interesting" effect of clobbering @another_array. (Have you ever
noticed how when a programmer says something is "interesting", that rather than meaning
"intriguing", they're disturbingly more apt to mean that it's "annoying", "difficult", or both? :-)

So just remember always to use the array or hash constructors with or , and you'll be fine,
although it's not always optimally efficient.

Surprisingly, the following dangerous-looking construct will actually work out fine:

That's because my() is more of a run-time statement than it is a compile-time declaration . This
means that the my() variable is remade afresh each time through the loop. So even though it as
though you stored the same variable reference each time, you actually did not! This is a subtle
distinction that can produce more efficient code at the risk of misleading all but the most experienced
of programmers. So I usually advise against teaching it to beginners. In fact, except for passing
arguments to functions, I seldom like to see the gimme-a-reference operator (backslash) used much
at all in code. Instead, I advise beginners that they (and most of the rest of us) should try to use the
much more easily understood constructors and instead of relying upon lexical (or dynamic)
scoping and hidden reference-counting to do the right thing behind the scenes.

In summary:

Speaking of things like , the following are actually the same thing:

That's because Perl's precedence rules on its five prefix dereferencers (which look like someone
swearing:) make them bind more tightly than the postfix subscripting brackets or braces!
This will no doubt come as a great shock to the C or C++ programmer, who is quite accustomed to
using to mean what's pointed to by the element of . That is, they first take the subscript,
and only then dereference the thing at that subscript. That's fine in C, but this isn't C.

The seemingly equivalent construct in Perl, first does the deref of $aref, making it take
$aref as a reference to an array, and then dereference that, and finally tell you the value of the
array pointed to by $AoA. If you wanted the C notion, you'd have to write to force the

to get evaluated first before the leading dereferencer.

If this is starting to sound scarier than it's worth, relax. Perl has some features to help you avoid its
most common pitfalls. The best way to avoid getting confused is to start every program like this:

Perl version 5.8.6 documentation - perldsc

Page 4http://perldoc.perl.org

@{$AoA[3]} = @array;

for $i (1..10) {
my @array = somefunc($i);
$AoA[$i] = \@array;

}

$AoA[$i] = [@array]; # usually best
$AoA[$i] = \@array; # perilous; just how my() was that array?
@{ $AoA[$i] } = @array; # way too tricky for most programmers

$aref->[2][2] # clear
$$aref[2][2] # confusing

#!/usr/bin/perl -w
use strict;

would

per se
looks

i’th

i’th

[] {}

[] {}

@{$AoA[$i]}

$ @ * % &

*a[i] a

$$aref[$i]

${$AoA[$i]}
$AoA[$i] $

CAVEAT ON PRECEDENCE

WHY YOU SHOULD ALWAYS use strict

This way, you'll be forced to declare all your variables with my() and also disallow accidental
"symbolic dereferencing". Therefore if you'd done this:

The compiler would immediately flag that as an error , because you were accidentally
accessing , an undeclared variable, and it would thereby remind you to write instead:

Before version 5.002, the standard Perl debugger didn't do a very nice job of printing out complex
data structures. With 5.002 or above, the debugger includes several new features, including
command line editing as well as the command to dump out complex data structures. For example,
given the assignment to $AoA above, here's the debugger output:

Presented with little comment (these will get their own manpages someday) here are short code
examples illustrating access of various types of data structures.

Perl version 5.8.6 documentation - perldsc

Page 5http://perldoc.perl.org

my $aref = [
["fred", "barney", "pebbles", "bambam", "dino",],
["homer", "bart", "marge", "maggie",],
["george", "jane", "elroy", "judy",],

];

print $aref[2][2];

print $aref->[2][2]

DB<1> x $AoA
$AoA = ARRAY(0x13b5a0)

0 ARRAY(0x1f0a24)
0 ’fred’
1 ’barney’
2 ’pebbles’
3 ’bambam’
4 ’dino’

1 ARRAY(0x13b558)
0 ’homer’
1 ’bart’
2 ’marge’
3 ’maggie’

2 ARRAY(0x13b540)
0 ’george’
1 ’jane’
2 ’elroy’
3 ’judy’

@AoA = (
["fred", "barney"],
["george", "jane", "elroy"],
["homer", "marge", "bart"],

);

at compile time
@aref

x

DEBUGGING

CODE EXAMPLES

ARRAYS OF ARRAYS
Declaration of an ARRAY OF ARRAYS

Perl version 5.8.6 documentation - perldsc

Page 6http://perldoc.perl.org

Generation of an ARRAY OF ARRAYS

Access and Printing of an ARRAY OF ARRAYS

Declaration of a HASH OF ARRAYS

reading from file
while (<>) {

push @AoA, [split];
}

calling a function
for $i (1 .. 10) {

$AoA[$i] = [somefunc($i)];
}

using temp vars
for $i (1 .. 10) {

@tmp = somefunc($i);
$AoA[$i] = [@tmp];

}

add to an existing row
push @{ $AoA[0] }, "wilma", "betty";

one element
$AoA[0][0] = "Fred";

another element
$AoA[1][1] =~ s/(\w)/\u$1/;

print the whole thing with refs
for $aref (@AoA) {

print "\t [@$aref],\n";
}

print the whole thing with indices
for $i (0 .. $#AoA) {

print "\t [@{$AoA[$i]}],\n";
}

print the whole thing one at a time
for $i (0 .. $#AoA) {

for $j (0 .. $#{ $AoA[$i] }) {
print "elt $i $j is $AoA[$i][$j]\n";

}
}

%HoA = (
flintstones => ["fred", "barney"],
jetsons => ["george", "jane", "elroy"],
simpsons => ["homer", "marge", "bart"],

);

HASHES OF ARRAYS

Perl version 5.8.6 documentation - perldsc

Page 7http://perldoc.perl.org

reading from file
flintstones: fred barney wilma dino
while (<>) {

next unless s/^(.*?):\s*//;
$HoA{$1} = [split];

}

reading from file; more temps
flintstones: fred barney wilma dino
while ($line = <>) {

($who, $rest) = split /:\s*/, $line, 2;
@fields = split ’ ’, $rest;
$HoA{$who} = [@fields];

}

calling a function that returns a list
for $group ("simpsons", "jetsons", "flintstones") {

$HoA{$group} = [get_family($group)];
}

likewise, but using temps
for $group ("simpsons", "jetsons", "flintstones") {

@members = get_family($group);
$HoA{$group} = [@members];

}

append new members to an existing family
push @{ $HoA{"flintstones"} }, "wilma", "betty";

one element
$HoA{flintstones}[0] = "Fred";

another element
$HoA{simpsons}[1] =~ s/(\w)/\u$1/;

print the whole thing
foreach $family (keys %HoA) {

print "$family: @{ $HoA{$family} }\n"
}

print the whole thing with indices
foreach $family (keys %HoA) {

print "family: ";
foreach $i (0 .. $#{ $HoA{$family} }) {

print " $i = $HoA{$family}[$i]";
}
print "\n";

}

print the whole thing sorted by number of members

Generation of a HASH OF ARRAYS

Access and Printing of a HASH OF ARRAYS

Perl version 5.8.6 documentation - perldsc

Page 8http://perldoc.perl.org

foreach $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {
print "$family: @{ $HoA{$family} }\n"

}

print the whole thing sorted by number of members and name
foreach $family (sort {

@{$HoA{$b}} <=> @{$HoA{$a}}
||

$a cmp $b
} keys %HoA)

{
print "$family: ", join(", ", sort @{ $HoA{$family} }), "\n";

}

@AoH = (
{

Lead => "fred",
Friend => "barney",

},
{

Lead => "george",
Wife => "jane",
Son => "elroy",

},
{

Lead => "homer",
Wife => "marge",
Son => "bart",

}
);

reading from file
format: LEAD=fred FRIEND=barney
while (<>) {

$rec = {};
for $field (split) {

($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}
push @AoH, $rec;

}

reading from file
format: LEAD=fred FRIEND=barney
no temp
while (<>) {

push @AoH, { split /[\s+=]/ };
}

calling a function that returns a key/value pair list, like

ARRAYS OF HASHES
Declaration of an ARRAY OF HASHES

Generation of an ARRAY OF HASHES

Perl version 5.8.6 documentation - perldsc

Page 9http://perldoc.perl.org

"lead","fred","daughter","pebbles"
while (%fields = getnextpairset()) {

push @AoH, { %fields };
}

likewise, but using no temp vars
while (<>) {

push @AoH, { parsepairs($_) };
}

add key/value to an element
$AoH[0]{pet} = "dino";
$AoH[2]{pet} = "santa’s little helper";

one element
$AoH[0]{lead} = "fred";

another element
$AoH[1]{lead} =~ s/(\w)/\u$1/;

print the whole thing with refs
for $href (@AoH) {

print "{ ";
for $role (keys %$href) {

print "$role=$href->{$role} ";
}
print "}\n";

}

print the whole thing with indices
for $i (0 .. $#AoH) {

print "$i is { ";
for $role (keys %{ $AoH[$i] }) {

print "$role=$AoH[$i]{$role} ";
}
print "}\n";

}

print the whole thing one at a time
for $i (0 .. $#AoH) {

for $role (keys %{ $AoH[$i] }) {
print "elt $i $role is $AoH[$i]{$role}\n";

}
}

%HoH = (
flintstones => {

lead => "fred",
pal => "barney",

Access and Printing of an ARRAY OF HASHES

Declaration of a HASH OF HASHES

HASHES OF HASHES

Perl version 5.8.6 documentation - perldsc

Page 10http://perldoc.perl.org

},
jetsons => {

lead => "george",
wife => "jane",
"his boy" => "elroy",

},
simpsons => {

lead => "homer",
wife => "marge",
kid => "bart",
},
);

reading from file
flintstones: lead=fred pal=barney wife=wilma pet=dino
while (<>) {

next unless s/^(.*?):\s*//;
$who = $1;
for $field (split) {

($key, $value) = split /=/, $field;
$HoH{$who}{$key} = $value;

}

reading from file; more temps
while (<>) {

next unless s/^(.*?):\s*//;
$who = $1;
$rec = {};
$HoH{$who} = $rec;
for $field (split) {

($key, $value) = split /=/, $field;
$rec->{$key} = $value;

}
}

calling a function that returns a key,value hash
for $group ("simpsons", "jetsons", "flintstones") {

$HoH{$group} = { get_family($group) };
}

likewise, but using temps
for $group ("simpsons", "jetsons", "flintstones") {

%members = get_family($group);
$HoH{$group} = { %members };

}

append new members to an existing family
%new_folks = (

wife => "wilma",
pet => "dino",

);

for $what (keys %new_folks) {

Generation of a HASH OF HASHES

Perl version 5.8.6 documentation - perldsc

Page 11http://perldoc.perl.org

$HoH{flintstones}{$what} = $new_folks{$what};
}

one element
$HoH{flintstones}{wife} = "wilma";

another element
$HoH{simpsons}{lead} =~ s/(\w)/\u$1/;

print the whole thing
foreach $family (keys %HoH) {

print "$family: { ";
for $role (keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

print the whole thing somewhat sorted
foreach $family (sort keys %HoH) {

print "$family: { ";
for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

print the whole thing sorted by number of members
foreach $family (sort { keys %{$HoH{$b}} <=> keys %{$HoH{$a}} } keys %HoH
) {

print "$family: { ";
for $role (sort keys %{ $HoH{$family} }) {

print "$role=$HoH{$family}{$role} ";
}
print "}\n";

}

establish a sort order (rank) for each role
$i = 0;
for (qw(lead wife son daughter pal pet)) { $rank{$_} = ++$i }

now print the whole thing sorted by number of members
foreach $family (sort { keys %{ $HoH{$b} } <=> keys %{ $HoH{$a} } } keys
%HoH) {

print "$family: { ";
and print these according to rank order
for $role (sort { $rank{$a} <=> $rank{$b} } keys %{ $HoH{$family} }

) {
print "$role=$HoH{$family}{$role} ";

}
print "}\n";

}

Access and Printing of a HASH OF HASHES

Here's a sample showing how to create and use a record whose fields are of many different sorts:

Perl version 5.8.6 documentation - perldsc

Page 12http://perldoc.perl.org

$rec = {
TEXT => $string,
SEQUENCE => [@old_values],
LOOKUP => { %some_table },
THATCODE => \&some_function,
THISCODE => sub { $_[0] ** $_[1] },
HANDLE => *STDOUT,

};

print $rec->{TEXT};

print $rec->{SEQUENCE}[0];
$last = pop @ { $rec->{SEQUENCE} };

print $rec->{LOOKUP}{"key"};
($first_k, $first_v) = each %{ $rec->{LOOKUP} };

$answer = $rec->{THATCODE}->($arg);
$answer = $rec->{THISCODE}->($arg1, $arg2);

careful of extra block braces on fh ref
print { $rec->{HANDLE} } "a string\n";

use FileHandle;
$rec->{HANDLE}->autoflush(1);
$rec->{HANDLE}->print(" a string\n");

%TV = (
flintstones => {

series => "flintstones",
nights => [qw(monday thursday friday)],
members => [

{ name => "fred", role => "lead", age => 36, },
{ name => "wilma", role => "wife", age => 31, },
{ name => "pebbles", role => "kid", age => 4, },

],
},

jetsons => {
series => "jetsons",
nights => [qw(wednesday saturday)],
members => [

{ name => "george", role => "lead", age => 41, },
{ name => "jane", role => "wife", age => 39, },
{ name => "elroy", role => "kid", age => 9, },

],
},

MORE ELABORATE RECORDS
Declaration of MORE ELABORATE RECORDS

Declaration of a HASH OF COMPLEX RECORDS

Perl version 5.8.6 documentation - perldsc

Page 13http://perldoc.perl.org

simpsons => {
series => "simpsons",
nights => [qw(monday)],
members => [

{ name => "homer", role => "lead", age => 34, },
{ name => "marge", role => "wife", age => 37, },
{ name => "bart", role => "kid", age => 11, },

],
},

);

reading from file
this is most easily done by having the file itself be
in the raw data format as shown above. perl is happy
to parse complex data structures if declared as data, so
sometimes it’s easiest to do that

here’s a piece by piece build up
$rec = {};
$rec->{series} = "flintstones";
$rec->{nights} = [find_days()];

@members = ();
assume this file in field=value syntax
while (<>) {

%fields = split /[\s=]+/;
push @members, { %fields };

}
$rec->{members} = [@members];

now remember the whole thing
$TV{ $rec->{series} } = $rec;

###
now, you might want to make interesting extra fields that
include pointers back into the same data structure so if
change one piece, it changes everywhere, like for example
if you wanted a {kids} field that was a reference
to an array of the kids’ records without having duplicate
records and thus update problems.
###
foreach $family (keys %TV) {

$rec = $TV{$family}; # temp pointer
@kids = ();
for $person (@{ $rec->{members} }) {

if ($person->{role} =~ /kid|son|daughter/) {
push @kids, $person;

}
}
REMEMBER: $rec and $TV{$family} point to same data!!
$rec->{kids} = [@kids];

}

Generation of a HASH OF COMPLEX RECORDS

You cannot easily tie a multilevel data structure (such as a hash of hashes) to a dbm file. The first
problem is that all but GDBM and Berkeley DB have size limitations, but beyond that, you also have
problems with how references are to be represented on disk. One experimental module that does
partially attempt to address this need is the MLDBM module. Check your nearest CPAN site as
described in for source code to MLDBM.

perlref(1), perllol(1), perldata(1), perlobj(1)

Tom Christiansen < >

Last update: Wed Oct 23 04:57:50 MET DST 1996

Perl version 5.8.6 documentation - perldsc

Page 14http://perldoc.perl.org

you copied the array, but the array itself contains pointers
to uncopied objects. this means that if you make bart get
older via

$TV{simpsons}{kids}[0]{age}++;

then this would also change in
print $TV{simpsons}{members}[2]{age};

because $TV{simpsons}{kids}[0] and $TV{simpsons}{members}[2]
both point to the same underlying anonymous hash table

print the whole thing
foreach $family (keys %TV) {

print "the $family";
print " is on during @{ $TV{$family}{nights} }\n";
print "its members are:\n";
for $who (@{ $TV{$family}{members} }) {

print " $who->{name} ($who->{role}), age $who->{age}\n";
}
print "it turns out that $TV{$family}{lead} has ";
print scalar (@{ $TV{$family}{kids} }), " kids named ";
print join (", ", map { $_->{name} } @{ $TV{$family}{kids} });
print "\n";

}

Database Ties

SEE ALSO

AUTHOR

perlmodlib

tchrist@perl.com

