
perldebguts - Guts of Perl debugging

This is not the perldebug(1) manpage, which tells you how to use the debugger. This manpage
describes low-level details concerning the debugger's internals, which range from difficult to
impossible to understand for anyone who isn't incredibly intimate with Perl's guts. Caveat lector.

Perl has special debugging hooks at compile-time and run-time used to create debugging
environments. These hooks are not to be confused with the command described in ,
which is usable only if a special Perl is built per the instructions in the podpage in the Perl
source tree.

For example, whenever you call Perl's built-in function from the package , the arguments
that the corresponding stack frame was called with are copied to the array. These
mechanisms are enabled by calling Perl with the switch. Specifically, the following additional
features are enabled (cf.):

Perl inserts the contents of (or if not
present) before the first line of your program.

Each array holds the lines of $filename for a file compiled by Perl. The
same is also true for ed strings that contain subroutines, or which are currently being
executed. The $filename for ed strings looks like . Code assertions in
regexes look like .

Values in this array are magical in numeric context: they compare equal to zero only if the line
is not breakable.

Each hash contains breakpoints and actions keyed by line number.
Individual entries (as opposed to the whole hash) are settable. Perl only cares about Boolean
true here, although the values used by have the form

.

The same holds for evaluated strings that contain subroutines, or which are currently being
executed. The $filename for ed strings looks like or .

Each scalar contains . This is also the case for
evaluated strings that contain subroutines, or which are currently being executed. The
$filename for ed strings looks like or .

After each d file is compiled, but before it is executed,
is called if the subroutine exists.

Here, the $filename is the expanded name of the d file, as found in the values of
%INC.

After each subroutine is compiled, the existence of
is checked. If this key exists, is called if the
subroutine also exists.

A hash is maintained, whose keys are subroutine names and whose values have
the form . has the form for
subroutines defined inside s, or for those within regex code assertions.

When the execution of your program reaches a point that can hold a breakpoint, the
subroutine is called if any of the variables , , or

is true. These variables are not izable. This feature is disabled when
executing inside , including functions called from it unless is true.

Perl version 5.8.6 documentation - perldebguts

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

Debugger Internals

perl -Dxxx perlrun
INSTALL

"$^P" in perlvar

perl5db.pl

caller DB
@DB::args

$ENV{PERL5DB} BEGIN {require ’perl5db.pl’}

@{"_<$filename"}
eval

eval (eval 34)
(re_eval 19)

%{"_<$filename"}

"$break_condition\0$action"

eval (eval 34) (re_eval 19)

${"_<$filename"} "_<$filename"

eval (eval 34) (re_eval 19)

require
DB::postponed(*{"_<$filename"}) DB::postponed

require

subname $DB::postponed{subname}
DB::postponed(subname) DB::postponed

%DB::sub
filename:startline-endline filename (eval 34)

eval (re_eval 19)

DB::DB() $DB::trace $DB::single
$DB::signal local

DB::DB() $^D & (1<<30)

-d

When execution of the program reaches a subroutine call, a call to () is made
instead, with holding the name of the called subroutine. (This doesn't happen if the
subroutine was compiled in the package.)

Note that if needs external data for it to work, no subroutine call is possible without it. As
an example, the standard debugger's depends on the variable (it defines how
many levels of recursion deep into the debugger you can go before a mandatory break). If

is not defined, subroutine calls are not possible, even though exists.

The environment variable can be used to define a debugger. For example, the minimal
"working" debugger (it actually doesn't do anything) consists of one line:

It can easily be defined like this:

Another brief debugger, slightly more useful, can be created with only the line:

This debugger prints a number which increments for each statement encountered and waits for you to
hit a newline before continuing to the next statement.

The following debugger is actually useful:

It prints the sequence number of each subroutine call and the name of the called subroutine. Note
that is being compiled into the package through the use of the directive.

When it starts, the debugger reads your rc file (or under Unix), which can set
important options. (A subroutine () can be defined here as well; it is executed after the
debugger completes its own initialization.)

After the rc file is read, the debugger reads the PERLDB_OPTS environment variable and uses it to
set debugger options. The contents of this variable are treated as if they were the argument of an

debugger command (q.v. in).

is an alias for , which holds the lines of the
currently-selected file (compiled by Perl), either explicitly chosen with the debugger's
command, or implicitly by flow of execution.

Values in this array are magical in numeric context: they compare equal to zero only if the line
is not breakable.

, is an alias for , which contains breakpoints and
actions keyed by line number in the currently-selected file, either explicitly chosen with the
debugger's command, or implicitly by flow of execution.

Perl version 5.8.6 documentation - perldebguts

Page 2http://perldoc.perl.org

&DB::sub
$DB::sub

DB

&DB::sub
&DB::sub $DB::deep

$DB::deep &DB::sub

PERL5DB

&DB::sub DB package

&afterinit

o
...

@DB::dbline @{"::_<current_file"}
f

%DB::dbline %{"::_<current_file"}

f

args

./.perldb ~/.perldb

"Options" in perldebug

Writing Your Own Debugger
Environment Variables

Debugger internal variables In addition to the file and subroutine-related variables mentioned above, the
debugger also maintains various magical internal variables.

sub DB::DB {}

$ PERL5DB="sub DB::DB {}" perl -d your-script

sub DB::DB {print ++$i; scalar <STDIN>}

{
package DB;
sub DB {}
sub sub {print ++$i, " $sub\n"; &$sub}

}

As previously noted, individual entries (as opposed to the whole hash) are settable. Perl only
cares about Boolean true here, although the values used by have the form

.

Some functions are provided to simplify customization.

See for description of options parsed by
parses debugger options; see for a

description of options recognized.

skips the specified number of frames and returns a list
containing information about the calling frames (all of them, if is missing). Each entry is
reference to a hash with keys (either , , or), (subroutine name, or info
about), (or a reference to an array), , and .

prints formatted info about caller
frames. The last two functions may be convenient as arguments to , commands.

Note that any variables and functions that are not documented in this manpages (or in) are
considered for internal use only, and as such are subject to change without notice.

The option can be used to control the output of frame information. For example, contrast this
expression trace:

with this one, once the ption has been set:

Perl version 5.8.6 documentation - perldebguts

Page 3http://perldoc.perl.org

perl5db.pl

"Options" in perldebug
"Options" in pperldebug

perldebug

"$break_condition\0$action"

DB::parse_options(string)

DB::dump_trace(skip[,count])
count

context . $ @ sub
eval args undef file line

DB::print_trace(FH, skip[, count[, short]])
< <<

frame

o frame=2

Debugger customization functions

Frame Listing Output Examples

$ perl -de 42
Stack dump during die enabled outside of evals.

Loading DB routines from perl5db.pl patch level 0.94
Emacs support available.

Enter h or ‘h h’ for help.

main::(-e:1): 0
DB<1> sub foo { 14 }

DB<2> sub bar { 3 }

DB<3> t print foo() * bar()
main::((eval 172):3): print foo() + bar();
main::foo((eval 168):2):
main::bar((eval 170):2):
42

DB<4> o f=2
frame = ’2’

DB<5> t print foo() * bar()
3: foo() * bar()
entering main::foo
2: sub foo { 14 };
exited main::foo
entering main::bar
2: sub bar { 3 };

By way of demonstration, we present below a laborious listing resulting from setting your
environment variable to the value , and running from the command

line. Examples use various values of are shown to give you a feel for the difference between
settings. Long those it may be, this is not a complete listing, but only excerpts.

1

2

4

Perl version 5.8.6 documentation - perldebguts

Page 4http://perldoc.perl.org

exited main::bar
42

entering main::BEGIN
entering Config::BEGIN
Package lib/Exporter.pm.
Package lib/Carp.pm.
Package lib/Config.pm.
entering Config::TIEHASH
entering Exporter::import
entering Exporter::export

entering Config::myconfig
entering Config::FETCH
entering Config::FETCH
entering Config::FETCH
entering Config::FETCH

entering main::BEGIN
entering Config::BEGIN
Package lib/Exporter.pm.
Package lib/Carp.pm.
exited Config::BEGIN
Package lib/Config.pm.
entering Config::TIEHASH
exited Config::TIEHASH
entering Exporter::import
entering Exporter::export
exited Exporter::export
exited Exporter::import
exited main::BEGIN
entering Config::myconfig
entering Config::FETCH
exited Config::FETCH
entering Config::FETCH
exited Config::FETCH
entering Config::FETCH

in $=main::BEGIN() from /dev/null:0
in $=Config::BEGIN() from lib/Config.pm:2
Package lib/Exporter.pm.
Package lib/Carp.pm.
Package lib/Config.pm.
in $=Config::TIEHASH(’Config’) from lib/Config.pm:644
in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from

/dev/null:0
in $=Exporter::export(’Config’, ’main’, ’myconfig’,

’config_vars’) from li
in @=Config::myconfig() from /dev/null:0
in $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574

PERLDB_OPTS f=n N
n

perl -d -V

6

14

Perl version 5.8.6 documentation - perldebguts

Page 5http://perldoc.perl.org

in $=Config::FETCH(ref(Config), ’PERL_VERSION’) from
lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’PERL_SUBVERSION’) from
lib/Config.pm:574

in $=Config::FETCH(ref(Config), ’osname’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), ’osvers’) from lib/Config.pm:574

in $=main::BEGIN() from /dev/null:0
in $=Config::BEGIN() from lib/Config.pm:2
Package lib/Exporter.pm.
Package lib/Carp.pm.
out $=Config::BEGIN() from lib/Config.pm:0
Package lib/Config.pm.
in $=Config::TIEHASH(’Config’) from lib/Config.pm:644
out $=Config::TIEHASH(’Config’) from lib/Config.pm:644
in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from

/dev/null:0
in $=Exporter::export(’Config’, ’main’, ’myconfig’,

’config_vars’) from lib/
out $=Exporter::export(’Config’, ’main’, ’myconfig’,

’config_vars’) from lib/
out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from

/dev/null:0
out $=main::BEGIN() from /dev/null:0
in @=Config::myconfig() from /dev/null:0
in $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574
out $=Config::FETCH(ref(Config), ’package’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574
out $=Config::FETCH(ref(Config), ’baserev’) from lib/Config.pm:574
in $=Config::FETCH(ref(Config), ’PERL_VERSION’) from

lib/Config.pm:574
out $=Config::FETCH(ref(Config), ’PERL_VERSION’) from

lib/Config.pm:574
in $=Config::FETCH(ref(Config), ’PERL_SUBVERSION’) from

lib/Config.pm:574

in $=main::BEGIN() from /dev/null:0
in $=Config::BEGIN() from lib/Config.pm:2
Package lib/Exporter.pm.
Package lib/Carp.pm.
out $=Config::BEGIN() from lib/Config.pm:0
Package lib/Config.pm.
in $=Config::TIEHASH(’Config’) from lib/Config.pm:644
out $=Config::TIEHASH(’Config’) from lib/Config.pm:644
in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from

/dev/null:0
in $=Exporter::export(’Config’, ’main’, ’myconfig’,

’config_vars’) from lib/E
out $=Exporter::export(’Config’, ’main’, ’myconfig’,

’config_vars’) from lib/E
out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from

/dev/null:0
out $=main::BEGIN() from /dev/null:0
in @=Config::myconfig() from /dev/null:0
in $=Config::FETCH(’Config=HASH(0x1aa444)’, ’package’) from

30

In all cases shown above, the line indentation shows the call tree. If bit 2 of is set, a line is
printed on exit from a subroutine as well. If bit 4 is set, the arguments are printed along with the caller
info. If bit 8 is set, the arguments are printed even if they are tied or references. If bit 16 is set, the
return value is printed, too.

When a package is compiled, a line like this

is printed with proper indentation.

There are two ways to enable debugging output for regular expressions.

If your perl is compiled with , you may use the flag on the command line.

Otherwise, one can , which has effects at compile time and run time. It is not
lexically scoped.

The debugging output at compile time looks like this:

Perl version 5.8.6 documentation - perldebguts

Page 6http://perldoc.perl.org

lib/Config.pm:574 out $=Config::FETCH(’Config=HASH(0x1aa444)’,
’package’) from lib/Config.pm:574

in $=Config::FETCH(’Config=HASH(0x1aa444)’, ’baserev’) from
lib/Config.pm:574

out $=Config::FETCH(’Config=HASH(0x1aa444)’, ’baserev’) from
lib/Config.pm:574

in $=CODE(0x15eca4)() from /dev/null:0
in $=CODE(0x182528)() from lib/Config.pm:2
Package lib/Exporter.pm.
out $=CODE(0x182528)() from lib/Config.pm:0
scalar context return from CODE(0x182528): undef
Package lib/Config.pm.
in $=Config::TIEHASH(’Config’) from lib/Config.pm:628
out $=Config::TIEHASH(’Config’) from lib/Config.pm:628
scalar context return from Config::TIEHASH: empty hash
in $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from

/dev/null:0
in $=Exporter::export(’Config’, ’main’, ’myconfig’,

’config_vars’) from lib/Exporter.pm:171
out $=Exporter::export(’Config’, ’main’, ’myconfig’,

’config_vars’) from lib/Exporter.pm:171
scalar context return from Exporter::export: ’’
out $=Exporter::import(’Config’, ’myconfig’, ’config_vars’) from

/dev/null:0
scalar context return from Exporter::import: ’’

Package lib/Carp.pm.

Compiling REx ‘[bc]d(ef*g)+h[ij]k$’
size 45 Got 364 bytes for offset annotations.
first at 1
rarest char g at 0
rarest char d at 0

1: ANYOF[bc](12)
12: EXACT <d>(14)

frame

-DDEBUGGING

use re ’debug’

Debugging regular expressions

-Dr

Compile-time output

The first line shows the pre-compiled form of the regex. The second shows the size of the compiled
form (in arbitrary units, usually 4-byte words) and the total number of bytes allocated for the
offset/length table, usually 4+ *8. The next line shows the label of the first node that does a
match.

The

line (split into two lines above) contains optimizer information. In the example shown, the optimizer
found that the match should contain a substring at offset 1, plus substring at some offset
between 3 and infinity. Moreover, when checking for these substrings (to abandon impossible
matches quickly), Perl will check for the substring before checking for the substring . The
optimizer may also use the knowledge that the match starts (at the) with a character class,
and no string shorter than 7 characters can possibly match.

The fields of interest which may appear in this line are

See above.

Which substring to check first.

The minimal length of the match.

Type of first matching node.

Perl version 5.8.6 documentation - perldebguts

Page 7http://perldoc.perl.org

14: CURLYX[0] {1,32767}(28)
16: OPEN1(18)
18: EXACT <e>(20)
20: STAR(23)
21: EXACT <f>(0)
23: EXACT <g>(25)
25: CLOSE1(27)
27: WHILEM[1/1](0)
28: NOTHING(29)
29: EXACT <h>(31)
31: ANYOF[ij](42)
42: EXACT <k>(44)
44: EOL(45)
45: END(0)

anchored ‘de’ at 1 floating ‘gh’ at 3..2147483647 (checking floating)
stclass ‘ANYOF[bc]’ minlen 7

Offsets: [45]
1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]
0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]
11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]
0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]
Omitting $‘ $& $’ support.

anchored ‘de’ at 1 floating ‘gh’ at 3..2147483647 (checking floating)
stclass ‘ANYOF[bc]’ minlen 7

size

de gh

gh de
first

anchored at

floating at

matching floating/anchored

minlen

stclass

noscan

id

id

STRING POS

STRING POS1..POS2

TYPE

Don't scan for the found substrings.

Means that the optimizer information is all that the regular expression contains, and thus one
does not need to enter the regex engine at all.

Set if the pattern contains .

Set if the pattern starts with a repeated char (as in).

Set if the pattern starts with .

Set if the pattern contain eval-groups, such as and .

If the pattern may match only at a handful of places, (with being , , or .
See the table below.

If a substring is known to match at end-of-line only, it may be followed by , as in .

The optimizer-specific information is used to avoid entering (a slow) regex engine on strings that will
not definitely match. If the flag is set, a call to the regex engine may be avoided even when the
optimizer found an appropriate place for the match.

Above the optimizer section is the list of of the compiled form of the regex. Each line has
format

: ()

Here are the possible types, with short descriptions:

Perl version 5.8.6 documentation - perldebguts

Page 8http://perldoc.perl.org

isall

GPOS

\G

plus

x+y

implicit

.*

with eval

(?{ code }) (??{ code })

anchored(TYPE)

TYPE BOL MBOL GPOS

$ floating ‘k’$

isall

nodes

id TYPE OPTIONAL-INFO next-id

Types of nodes

TYPE arg-description [num-args] [longjump-len] DESCRIPTION

Exit points
END no End of program.
SUCCEED no Return from a subroutine, basically.

Anchors:
BOL no Match "" at beginning of line.
MBOL no Same, assuming multiline.
SBOL no Same, assuming singleline.
EOS no Match "" at end of string.
EOL no Match "" at end of line.
MEOL no Same, assuming multiline.
SEOL no Same, assuming singleline.
BOUND no Match "" at any word boundary
BOUNDL no Match "" at any word boundary
NBOUND no Match "" at any word non-boundary
NBOUNDL no Match "" at any word non-boundary
GPOS no Matches where last m//g left off.

[Special] alternatives

Perl version 5.8.6 documentation - perldebguts

Page 9http://perldoc.perl.org

ANY no Match any one character (except newline).
SANY no Match any one character.
ANYOF sv Match character in (or not in) this class.
ALNUM no Match any alphanumeric character
ALNUML no Match any alphanumeric char in locale
NALNUM no Match any non-alphanumeric character
NALNUML no Match any non-alphanumeric char in locale
SPACE no Match any whitespace character
SPACEL no Match any whitespace char in locale
NSPACE no Match any non-whitespace character
NSPACEL no Match any non-whitespace char in locale
DIGIT no Match any numeric character
NDIGIT no Match any non-numeric character

BRANCH The set of branches constituting a single choice are hooked
together with their "next" pointers, since precedence prevents
anything being concatenated to any individual branch. The
"next" pointer of the last BRANCH in a choice points to the
thing following the whole choice. This is also where the
final "next" pointer of each individual branch points; each
branch starts with the operand node of a BRANCH node.
#
BRANCH node Match this alternative, or the next...

BACK Normal "next" pointers all implicitly point forward; BACK
exists to make loop structures possible.
not used
BACK no Match "", "next" ptr points backward.

Literals
EXACT sv Match this string (preceded by length).
EXACTF sv Match this string, folded (prec. by length).
EXACTFL sv Match this string, folded in locale (w/len).

Do nothing
NOTHING no Match empty string.
A variant of above which delimits a group, thus stops optimizations
TAIL no Match empty string. Can jump here from outside.

STAR,PLUS ’?’, and complex ’*’ and ’+’, are implemented as circular
BRANCH structures using BACK. Simple cases (one character
per match) are implemented with STAR and PLUS for speed
and to minimize recursive plunges.
#
STAR node Match this (simple) thing 0 or more times.
PLUS node Match this (simple) thing 1 or more times.

CURLY sv 2 Match this simple thing {n,m} times.
CURLYN no 2 Match next-after-this simple thing
{n,m} times, set parens.
CURLYM no 2 Match this medium-complex thing {n,m} times.
CURLYX sv 2 Match this complex thing {n,m} times.

This terminator creates a loop structure for CURLYX

Following the optimizer information is a dump of the offset/length table, here split across several lines:

The first line here indicates that the offset/length table contains 45 entries. Each entry is a pair of
integers, denoted by . Entries are numbered starting with 1, so entry #1 here is

and entry #12 is . indicates that the node labeled (the) begins at
character position 1 in the pre-compiled form of the regex, and has a length of 4 characters. in
position 12 indicates that the node labeled (the) begins at character position 5
in the pre-compiled form of the regex, and has a length of 1 character. in position 14 indicates
that the node labeled (the) begins at character position 12 in the
pre-compiled form of the regex, and has a length of 1 character---that is, it corresponds to the
symbol in the precompiled regex.

Perl version 5.8.6 documentation - perldebguts

Page 10http://perldoc.perl.org

WHILEM no Do curly processing and see if rest matches.

OPEN,CLOSE,GROUPP ...are numbered at compile time.
OPEN num 1 Mark this point in input as start of #n.
CLOSE num 1 Analogous to OPEN.

REF num 1 Match some already matched string
REFF num 1 Match already matched string, folded
REFFL num 1 Match already matched string, folded in loc.

grouping assertions
IFMATCH off 1 2 Succeeds if the following matches.
UNLESSM off 1 2 Fails if the following matches.
SUSPEND off 1 1 "Independent" sub-regex.
IFTHEN off 1 1 Switch, should be preceded by switcher .
GROUPP num 1 Whether the group matched.

Support for long regex
LONGJMP off 1 1 Jump far away.
BRANCHJ off 1 1 BRANCH with long offset.

The heavy worker
EVAL evl 1 Execute some Perl code.

Modifiers
MINMOD no Next operator is not greedy.
LOGICAL no Next opcode should set the flag only.

This is not used yet
RENUM off 1 1 Group with independently numbered parens.

This is not really a node, but an optimized away piece of a "long"
node.

To simplify debugging output, we mark it as if it were a node
OPTIMIZED off Placeholder for dump.

Offsets: [45]
1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]
0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]
11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]
0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]

offset[length]
1[4] 5[1] 1[4] 1: 1: ANYOF[bc]

5[1]
12: 12: EXACT <d>

12[1]
14: 14: CURLYX[0] {1,32767}

+

items indicate that there is no corresponding node.

First of all, when doing a match, one may get no run-time output even if debugging is enabled. This
means that the regex engine was never entered and that all of the job was therefore done by the
optimizer.

If the regex engine was entered, the output may look like this:

The most significant information in the output is about the particular of the compiled regex that is
currently being tested against the target string. The format of these lines is

< > < > | :

The info is indented with respect to the backtracking level. Other incidental information appears
interspersed within.

Perl is a profligate wastrel when it comes to memory use. There is a saying that to estimate memory
usage of Perl, assume a reasonable algorithm for memory allocation, multiply that estimate by 10,
and while you still may miss the mark, at least you won't be quite so astonished. This is not absolutely
true, but may provide a good grasp of what happens.

Assume that an integer cannot take less than 20 bytes of memory, a float cannot take less than 24
bytes, a string cannot take less than 32 bytes (all these examples assume 32-bit architectures, the
result are quite a bit worse on 64-bit architectures). If a variable is accessed in two of three different
ways (which require an integer, a float, or a string), the memory footprint may increase yet another 20
bytes. A sloppy malloc(3) implementation can inflate these numbers dramatically.

On the opposite end of the scale, a declaration like

Perl version 5.8.6 documentation - perldebguts

Page 11http://perldoc.perl.org

0[0]

Run-time output

Matching ‘[bc]d(ef*g)+h[ij]k$’ against ‘abcdefg__gh__’
Setting an EVAL scope, savestack=3
2 <ab> <cdefg__gh_> | 1: ANYOF
3 <abc> <defg__gh_> | 11: EXACT <d>
4 <abcd> <efg__gh_> | 13: CURLYX {1,32767}
4 <abcd> <efg__gh_> | 26: WHILEM
0 out of 1..32767 cc=effff31c
4 <abcd> <efg__gh_> | 15: OPEN1
4 <abcd> <efg__gh_> | 17: EXACT <e>
5 <abcde> <fg__gh_> | 19: STAR

EXACT <f> can match 1 times out of 32767...
Setting an EVAL scope, savestack=3
6 <bcdef> <g__gh__> | 22: EXACT <g>
7 <bcdefg> <__gh__> | 24: CLOSE1
7 <bcdefg> <__gh__> | 26: WHILEM

1 out of 1..32767 cc=effff31c
Setting an EVAL scope, savestack=12
7 <bcdefg> <__gh__> | 15: OPEN1
7 <bcdefg> <__gh__> | 17: EXACT <e>
restoring \1 to 4(4)..7
failed, try continuation...

7 <bcdefg> <__gh__> | 27: NOTHING
7 <bcdefg> <__gh__> | 28: EXACT <h>

failed...
failed...

sub foo;

node

STRING-OFFSET PRE-STRING POST-STRING ID TYPE

TYPE

Debugging Perl memory usage

may take up to 500 bytes of memory, depending on which release of Perl you're running.

Anecdotal estimates of source-to-compiled code bloat suggest an eightfold increase. This means that
the compiled form of reasonable (normally commented, properly indented etc.) code will take about
eight times more space in memory than the code took on disk.

The command-line switch is obsolete since circa Perl 5.6.0 (it was available only if Perl was built
with). The switch was used to track Perl's memory allocations and possible memory
leaks. These days the use of malloc debugging tools like or is suggested instead.

One way to find out how much memory is being used by Perl data structures is to install the
Devel::Size module from CPAN: it gives you the minimum number of bytes required to store a
particular data structure. Please be mindful of the difference between the size() and total_size().

If Perl has been compiled using Perl's malloc you can analyze Perl memory usage by setting the
$ENV{PERL_DEBUG_MSTATS}.

If your perl is using Perl's malloc() and was compiled with the necessary switches (this is the default),
then it will print memory usage statistics after compiling your code when

, and before termination of the program when
. The report format is similar to the following example:

It is possible to ask for such a statistic at arbitrary points in your execution using the mstat() function
out of the standard Devel::Peek module.

Here is some explanation of that format:

Perl's malloc() uses bucketed allocations. Every request is rounded up to the closest bucket
size available, and a bucket is taken from the pool of buckets of that size.

The line above describes the limits of buckets currently in use. Each bucket has two sizes:
memory footprint and the maximal size of user data that can fit into this bucket. Suppose in
the above example that the smallest bucket were size 4. The biggest bucket would have
usable size 8188, and the memory footprint would be 8192.

In a Perl built for debugging, some buckets may have negative usable size. This means that
these buckets cannot (and will not) be used. For larger buckets, the memory footprint may be
one page greater than a power of 2. If so, case the corresponding power of two is printed in
the field above.

Free/Used

The 1 or 2 rows of numbers following that correspond to the number of buckets of each size

Perl version 5.8.6 documentation - perldebguts

Page 12http://perldoc.perl.org

$ PERL_DEBUG_MSTATS=2 perl -e "require Carp"
Memory allocation statistics after compilation: (buckets 4(4)..8188(8192)

14216 free: 130 117 28 7 9 0 2 2 1 0 0
437 61 36 0 5

60924 used: 125 137 161 55 7 8 6 16 2 0 1
74 109 304 84 20
Total sbrk(): 77824/21:119. Odd ends: pad+heads+chain+tail: 0+636+0+2048.
Memory allocation statistics after execution: (buckets 4(4)..8188(8192)

30888 free: 245 78 85 13 6 2 1 3 2 0 1
315 162 39 42 11
175816 used: 265 176 1112 111 26 22 11 27 2 1 1

196 178 1066 798 39
Total sbrk(): 215040/47:145. Odd ends: pad+heads+chain+tail:

0+2192+0+6144.

-DL
-DDEBUGGING

$ENV{PERL_DEBUG_MSTATS} > 1
$ENV{PERL_DEBUG_MSTATS} >= 1

buckets SMALLEST(APPROX)..GREATEST(APPROX)

APPROX

Purify valgrind

Using $ENV{PERL_DEBUG_MSTATS}

between and . In the first row, the sizes (memory footprints) of buckets
are powers of two--or possibly one page greater. In the second row, if present, the memory
footprints of the buckets are between the memory footprints of two buckets "above".

For example, suppose under the previous example, the memory footprints were

With non- perl, the buckets starting from have a 4-byte overhead, and thus
an 8192-long bucket may take up to 8188-byte allocations.

The first two fields give the total amount of memory perl sbrk(2)ed (ess-broken? :-) and
number of sbrk(2)s used. The third number is what perl thinks about continuity of returned
chunks. So long as this number is positive, malloc() will assume that it is probable that sbrk(2)
will provide continuous memory.

Memory allocated by external libraries is not counted.

The amount of sbrk(2)ed memory needed to keep buckets aligned.

Although memory overhead of bigger buckets is kept inside the bucket, for smaller buckets, it
is kept in separate areas. This field gives the total size of these areas.

malloc() may want to subdivide a bigger bucket into smaller buckets. If only a part of the
deceased bucket is left unsubdivided, the rest is kept as an element of a linked list. This field
gives the total size of these chunks.

To minimize the number of sbrk(2)s, malloc() asks for more memory. This field gives the size
of the yet unused part, which is sbrk(2)ed, but never touched.

(Note that -DL is obsolete since circa 5.6.0, and even before that Perl needed to be compiled with
-DDEBUGGING.)

Below we show how to analyse memory usage by

The file in question contains a header and 146 lines similar to

: The discussion below supposes 32-bit architecture. In newer releases of Perl, memory
usage of the constructs discussed here is greatly improved, but the story discussed below is a real-life
story. This story is mercilessly terse, and assumes rather more than cursory knowledge of Perl
internals. Type space to continue, `q' to quit. (Actually, you just want to skip to the next section.)

Here is the itemized list of Perl allocations performed during parsing of this file:

Perl version 5.8.6 documentation - perldebguts

Page 13http://perldoc.perl.org

SMALLEST GREATEST

DEBUGGING 128

Total sbrk(): SBRKed/SBRKs:CONTINUOUS

pad: 0

heads: 2192

chain: 0

tail: 6144

free: 8 16 32 64 128 256 512 1024 2048 4096
8192

4 12 24 48 80

do ’lib/auto/POSIX/autosplit.ix’;

sub getcwd;

!!! "after" at test.pl line 3.
Id subtot 4 8 12 16 20 24 28 32 36 40 48 56 64 72 80

80+

Example of using -DL switch

WARNING

To see this list, insert two statements around the call:

and run it with Perl's option. The first warn() will print memory allocation info before parsing the
file and will memorize the statistics at this point (we ignore what it prints). The second warn() prints
increments with respect to these memorized data. This is the printout shown above.

Different s on the left correspond to different subsystems of the perl interpreter. They are just the
first argument given to the perl memory allocation API named New(). To find what means, just

the perl source for . You'll find it in , function savepvn(). (I know, you wonder why we
told you to and then gave away the answer. That's because grepping the source is good for the
soul.) This function is used to store a copy of an existing chunk of memory. Using a C debugger, one
can see that the function was called either directly from gv_init() or via sv_magic(), and that gv_init() is
called from gv_fetchpv()--which was itself called from newSUB(). Please stop to catch your breath
now.

: To reach this point in the debugger and skip the calls to savepvn() during the compilation of
the main program, you should set a C breakpoint in Perl_warn(), continue until this point is reached,
and set a C breakpoint in Perl_savepvn(). Note that you may need to skip a handful of
Perl_savepvn() calls that do not correspond to mass production of CVs (there are more
allocations than 146 similar lines of). Note also that prefixes are
added by macroization code in perl header files to avoid conflicts with external libraries.

Anyway, we see that ids correspond to creation of globs, twice per glob - for glob name, and glob
stringification magic.

Here are explanations for other s above:

717 Creates bigger structures. In the case above, it creates 3 s per subroutine, one for a
list of lexical variable names, one for a scratchpad (which contains lexical variables and

), and one for the array of scratchpads needed for recursion.

It also creates a and a per subroutine, all called from start_subparse().

002 Creates a C array corresponding to the of scratchpads and the scratchpad itself. The first
fake entry of this scratchpad is created though the subroutine itself is not defined yet.

Perl version 5.8.6 documentation - perldebguts

Page 14http://perldoc.perl.org

0 02 13752 294
4
0 54 5545 . . 8 124 16 . . . 1 1

3
5 05 32 1

.
6 02 7152 149

.
7 02 3600 150

.
7 03 64 . -1 . 1 . . 2

.
7 04 7056

7
7 17 38404 1 . . 442 149 . . 147

.
9 03 2078 17 249 32 2

.

warn(’!’);
do ’lib/auto/POSIX/autosplit.ix’;
warn(’!!! "after"’);

warn(’!...’)

9 03
903

903
Perl_

903

XPV* AV

targets

GV CV

AV

-DL

grep
grep

NOTE

Id

util.c

then

lib/auto/POSIX/autosplit.ix

Id

It also creates C arrays to keep data for the stash. This is one HV, but it grows; thus, there are
4 big allocations: the big chunks are not freed, but are kept as additional arenas for
allocations.

054 Creates a for the name of the glob for the subroutine. This name is a key in a .

Big allocations with this correspond to allocations of new arenas to keep .

602 Creates a for the glob for the subroutine.

702 Creates the for the glob for the subroutine.

704 Creates which keep SVs.

If Perl is run with option, then warn()s that start with `!' behave specially. They print a list of
of memory allocations, and statistics of allocations of different sizes for these categories.

If warn() string starts with

print changed categories only, print the differences in counts of allocations.

print grown categories only; print the absolute values of counts, and totals.

print nonempty categories, print the absolute values of counts and totals.

If an extension or external library does not use the Perl API to allocate memory, such allocations are
not counted.

, , , and .

Perl version 5.8.6 documentation - perldebguts

Page 15http://perldoc.perl.org

SV

HEK

HE

GP

MAGIC

!!!

!!

!

stash

Id

arenas

categories

perldebug perlguts perlrun re Devel::DProf

-DL details

Limitations of -DL statistics

-DL

SEE ALSO

