
perlcompile - Introduction to the Perl Compiler-Translator

Perl has always had a compiler: your source is compiled into an internal form (a parse tree) which is
then optimized before being run. Since version 5.005, Perl has shipped with a module capable of
inspecting the optimized parse tree (), and this has been used to write many useful utilities, including
a module that lets you turn your Perl into C source code that can be compiled into a native
executable.

The module provides access to the parse tree, and other modules ("back ends") do things with the
tree. Some write it out as bytecode, C source code, or a semi-human-readable text. Another traverses
the parse tree to build a cross-reference of which subroutines, formats, and variables are used where.
Another checks your code for dubious constructs. Yet another back end dumps the parse tree back
out as Perl source, acting as a source code beautifier or deobfuscator.

Because its original purpose was to be a way to produce C code corresponding to a Perl program,
and in turn a native executable, the module and its associated back ends are known as "the
compiler", even though they don't really compile anything. Different parts of the compiler are more
accurately a "translator", or an "inspector", but people want Perl to have a "compiler option" not an
"inspector gadget". What can you do?

This document covers the use of the Perl compiler: which modules it comprises, how to use the most
important of the back end modules, what problems there are, and how to work around them.

The compiler back ends are in the hierarchy, and the front-end (the module that you, the user of
the compiler, will sometimes interact with) is the O module. Some back ends (e.g.,) have
programs (e.g.,) to hide the modules' complexity.

Here are the important back ends to know about, with their status expressed as a number from 0
(outline for later implementation) to 10 (if there's a bug in it, we're very surprised):

B::Bytecode

Stores the parse tree in a machine-independent format, suitable for later reloading through the
ByteLoader module. Status: 5 (some things work, some things don't, some things are
untested).

B::C

Creates a C source file containing code to rebuild the parse tree and resume the interpreter.
Status: 6 (many things work adequately, including programs using Tk).

B::CC

Creates a C source file corresponding to the run time code path in the parse tree. This is the
closest to a Perl-to-C translator there is, but the code it generates is almost incomprehensible
because it translates the parse tree into a giant switch structure that manipulates Perl
structures. Eventual goal is to reduce (given sufficient type information in the Perl program)
some of the Perl data structure manipulations into manipulations of C-level ints, floats, etc.
Status: 5 (some things work, including uncomplicated Tk examples).

B::Lint

Complains if it finds dubious constructs in your source code. Status: 6 (it works adequately,
but only has a very limited number of areas that it checks).

B::Deparse

Recreates the Perl source, making an attempt to format it coherently. Status: 8 (it works
nicely, but a few obscure things are missing).

Perl version 5.8.6 documentation - perlcompile

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

B

B

B

B::
B::C

Layout

perlcc

B::Xref

Reports on the declaration and use of subroutines and variables. Status: 8 (it works nicely, but
still has a few lingering bugs).

The following sections describe how to use the various compiler back ends. They're presented
roughly in order of maturity, so that the most stable and proven back ends are described first, and the
most experimental and incomplete back ends are described last.

The O module automatically enabled the flag to Perl, which prevents Perl from executing your code
once it has been compiled. This is why all the back ends print:

before producing any other output.

The cross referencing back end (B::Xref) produces a report on your program, breaking down
declarations and uses of subroutines and variables (and formats) by file and subroutine. For instance,
here's part of the report from the program that comes with Perl:

This shows the variables used in the subroutine . The variable
is a my() (lexical) variable, ntroduced (first declared with my()) on line 1069, and used on line 1079.
The variable from the main package is used on 1086, and so on.

A line number may be prefixed by a single letter:

i

Lexical variable introduced (declared with my()) for the first time.

&

Subroutine or method call.

s

Subroutine defined.

r

Format defined.

The most useful option the cross referencer has is to save the report to a separate file. For instance,
to save the report on to the file :

Perl version 5.8.6 documentation - perlcompile

Page 2http://perldoc.perl.org

Using The Back Ends

-c

i

myperlprogram syntax OK

Subroutine clear_noremap
Package (lexical)
$ready_to_print i1069, 1079

Package main
$& 1086
$. 1086
$0 1086
$1 1087
$2 1085, 1085
$3 1085, 1085
$ARGV 1086
%HTML_Escapes 1085, 1085

$ perl -MO=Xref,-oreport myperlprogram

The Cross Referencing Back End

pod2man

myperlprogram report

clear_noremap $ready_to_print

$&

The Deparse back end turns your Perl source back into Perl source. It can reformat along the way,
making it useful as a de-obfuscator. The most basic way to use it is:

You'll notice immediately that Perl has no idea of how to paragraph your code. You'll have to separate
chunks of code from each other with newlines by hand. However, watch what it will do with one-liners:

The decompiler has several options for the code it generates. For instance, you can set the size of
each indent from 4 (as above) to 2 with:

The option adds parentheses where normally they are omitted:

See for more information on the formatting options.

The lint back end (B::Lint) inspects programs for poor style. One programmer's bad style is another
programmer's useful tool, so options let you select what is complained about.

To run the style checker across your source code:

To disable context checks and undefined subroutines:

See for information on the options.

This module saves the internal compiled state of your Perl program to a C source file, which can be
turned into a native executable for that particular platform using a C compiler. The resulting program
links against the Perl interpreter library, so it will not save you disk space (unless you build Perl with a

Perl version 5.8.6 documentation - perlcompile

Page 3http://perldoc.perl.org

$ perl -MO=Deparse myperlprogram

$ perl -MO=Deparse -e ’$op=shift||die "usage: $0
code [...]";chomp(@ARGV=<>)unless@ARGV; for(@ARGV){$was=$_;eval$op;
die$@ if$@; rename$was,$_ unless$was eq $_}’
-e syntax OK
$op = shift @ARGV || die("usage: $0 code [...]");
chomp(@ARGV = <ARGV>) unless @ARGV;
foreach $_ (@ARGV) {

$was = $_;
eval $op;
die $@ if $@;
rename $was, $_ unless $was eq $_;

}

$ perl -MO=Deparse,-si2 myperlprogram

$ perl -MO=Deparse -e ’print "Hello, world\n"’
-e syntax OK
print "Hello, world\n";
$ perl -MO=Deparse,-p -e ’print "Hello, world\n"’
-e syntax OK
print("Hello, world\n");

$ perl -MO=Lint myperlprogram

$ perl -MO=Lint,-context,-undefined-subs myperlprogram

The Decompiling Back End

The Lint Back End

The Simple C Back End

-p

B::Deparse

B::Lint

shared library) or program size. It may, however, save you startup time.

The tool generates such executables by default.

This back end is only useful if you also have a way to load and execute the bytecode that it produces.
The ByteLoader module provides this functionality.

To turn a Perl program into executable byte code, you can use with the switch:

The byte code is machine independent, so once you have a compiled module or program, it is as
portable as Perl source (assuming that the user of the module or program has a modern-enough Perl
interpreter to decode the byte code).

See for information on options to control the optimization and nature of the code
generated by the Bytecode module.

The optimized C back end will turn your Perl program's run time code-path into an equivalent (but
optimized) C program that manipulates the Perl data structures directly. The program will still link
against the Perl interpreter library, to allow for eval(), , , etc.

The tool generates such executables when using the -O switch. To compile a Perl program
(ending in or):

To produce a shared library from a Perl module (ending in):

For more information, see and .

B

This module is the introspective ("reflective" in Java terms) module, which allows a Perl
program to inspect its innards. The back end modules all use this module to gain access to
the compiled parse tree. You, the user of a back end module, will not need to interact with B.

O

This module is the front-end to the compiler's back ends. Normally called something like this:

This is like saying in your Perl program.

B::Asmdata

This module is used by the B::Assembler module, which is in turn used by the B::Bytecode
module, which stores a parse-tree as bytecode for later loading. It's not a back end itself, but
rather a component of a back end.

B::Assembler

This module turns a parse-tree into data suitable for storing and later decoding back into a

Perl version 5.8.6 documentation - perlcompile

Page 4http://perldoc.perl.org

perlcc

perlcc -B

s///e require

perlcc
.pl .p

.pm

use O ’Deparse’

perlcc myperlprogram.pl

perlcc -B myperlprogram.pl

perlcc -O myperlprogram.pl

perlcc -O Myperlmodule.pm

$ perl -MO=Deparse myperlprogram

The Bytecode Back End

The Optimized C Back End

B::Bytecode

perlcc B::CC

Module List for the Compiler Suite

parse-tree. It's not a back end itself, but rather a component of a back end. It's used by the
program that produces bytecode.

B::Bblock

This module is used by the B::CC back end. It walks "basic blocks". A basic block is a series
of operations which is known to execute from start to finish, with no possibility of branching or
halting.

B::Bytecode

This module is a back end that generates bytecode from a program's parse tree. This
bytecode is written to a file, from where it can later be reconstructed back into a parse tree.
The goal is to do the expensive program compilation once, save the interpreter's state into a
file, and then restore the state from the file when the program is to be executed. See

for details about usage.

B::C

This module writes out C code corresponding to the parse tree and other interpreter internal
structures. You compile the corresponding C file, and get an executable file that will restore
the internal structures and the Perl interpreter will begin running the program. See

for details about usage.

B::CC

This module writes out C code corresponding to your program's operations. Unlike the B::C
module, which merely stores the interpreter and its state in a C program, the B::CC module
makes a C program that does not involve the interpreter. As a consequence, programs
translated into C by B::CC can execute faster than normal interpreted programs. See

for details about usage.

B::Concise

This module prints a concise (but complete) version of the Perl parse tree. Its output is more
customizable than the one of B::Terse or B::Debug (and it can emulate them). This module
useful for people who are writing their own back end, or who are learning about the Perl
internals. It's not useful to the average programmer.

B::Debug

This module dumps the Perl parse tree in verbose detail to STDOUT. It's useful for people
who are writing their own back end, or who are learning about the Perl internals. It's not useful
to the average programmer.

B::Deparse

This module produces Perl source code from the compiled parse tree. It is useful in debugging
and deconstructing other people's code, also as a pretty-printer for your own source. See

for details about usage.

B::Disassembler

This module turns bytecode back into a parse tree. It's not a back end itself, but rather a
component of a back end. It's used by the program that comes with the
bytecode.

B::Lint

This module inspects the compiled form of your source code for things which, while some
people frown on them, aren't necessarily bad enough to justify a warning. For instance, use of
an array in scalar context without explicitly saying is something that Lint
can identify. See for details about usage.

B::Showlex

Perl version 5.8.6 documentation - perlcompile

Page 5http://perldoc.perl.org

assemble

The
Bytecode Back End

The Simple
C Back End

The
Optimized C Back End

The
Decompiling Back End

disassemble

The Lint Back End
scalar(@array)

This module prints out the my() variables used in a function or a file. To get a list of the my()
variables used in the subroutine mysub() defined in the file myperlprogram:

To get a list of the my() variables used in the file myperlprogram:

[BROKEN]

B::Stackobj

This module is used by the B::CC module. It's not a back end itself, but rather a component of
a back end.

B::Stash

This module is used by the program, which compiles a module into an executable.
B::Stash prints the symbol tables in use by a program, and is used to prevent B::CC from
producing C code for the B::* and O modules. It's not a back end itself, but rather a
component of a back end.

B::Terse

This module prints the contents of the parse tree, but without as much information as
B::Debug. For comparison, produced 96 lines of output from
B::Debug, but only 6 from B::Terse.

This module is useful for people who are writing their own back end, or who are learning about
the Perl internals. It's not useful to the average programmer.

B::Xref

This module prints a report on where the variables, subroutines, and formats are defined and
used within a program and the modules it loads. See for
details about usage.

The simple C backend currently only saves typeglobs with alphanumeric names.

The optimized C backend outputs code for more modules than it should (e.g., DirHandle). It also has
little hope of properly handling outside the running subroutine (is okay).

currently does not work at all in this backend. It also creates a huge initialization
function that gives C compilers headaches. Splitting the initialization function gives better results.
Other problems include: unsigned math does not work correctly; some opcodes are handled
incorrectly by default opcode handling mechanism.

BEGIN{} blocks are executed while compiling your code. Any external state that is initialized in
BEGIN{}, such as opening files, initiating database connections etc., do not behave properly. To work
around this, Perl has an INIT{} block that corresponds to code being executed before your program
begins running but after your program has finished being compiled. Execution order: BEGIN{},
(possible save of state through compiler back-end), INIT{}, program runs, END{}.

This document was originally written by Nathan Torkington, and is now maintained by the
perl5-porters mailing list .

Perl version 5.8.6 documentation - perlcompile

Page 6http://perldoc.perl.org

$ perl -MO=Showlex,mysub myperlprogram

$ perl -MO=Showlex myperlprogram

perlcc

The Cross Referencing Back End

perl5-porters@perl.org

print "Hello, world."

goto LABEL goto &sub
goto LABEL

KNOWN PROBLEMS

AUTHOR

