
perlboot - Beginner's Object-Oriented Tutorial

If you're not familiar with objects from other languages, some of the other Perl object documentation
may be a little daunting, such as , a basic reference in using objects, and , which
introduces readers to the peculiarities of Perl's object system in a tutorial way.

So, let's take a different approach, presuming no prior object experience. It helps if you know about
subroutines (), references (et. seq.), and packages (), so become familiar with
those first if you haven't already.

Let's let the animals talk for a moment:

This results in:

Nothing spectacular here. Simple subroutines, albeit from separate packages, and called using the
full package name. So let's create an entire pasture:

This results in:

Wow. That symbolic coderef de-referencing there is pretty nasty. We're counting on
mode, certainly not recommended for larger programs. And why was that necessary? Because

the name of the package seems to be inseparable from the name of the subroutine we want to invoke

Perl version 5.8.6 documentation - perlboot

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

perlobj perltoot

perlsub perlref perlmod

If we could talk to the animals...

sub Cow::speak {
print "a Cow goes moooo!\n";

}
sub Horse::speak {
print "a Horse goes neigh!\n";

}
sub Sheep::speak {
print "a Sheep goes baaaah!\n"

}

Cow::speak;
Horse::speak;
Sheep::speak;

a Cow goes moooo!
a Horse goes neigh!
a Sheep goes baaaah!

Cow::speak, Horse::speak, Sheep::speak as before
@pasture = qw(Cow Cow Horse Sheep Sheep);
foreach $animal (@pasture) {
&{$animal."::speak"};

}

a Cow goes moooo!
a Cow goes moooo!
a Horse goes neigh!
a Sheep goes baaaah!
a Sheep goes baaaah!

no strict
subs

within that package.

Or is it?

For now, let's say that invokes subroutine in package . (Here,
"Class" is used in its "category" meaning, not its "scholastic" meaning.) That's not completely
accurate, but we'll do this one step at a time. Now let's use it like so:

And once again, this results in:

That's not fun yet. Same number of characters, all constant, no variables. But yet, the parts are
separable now. Watch:

Ahh! Now that the package name has been parted from the subroutine name, we can use a variable
package name. And this time, we've got something that works even when is
enabled.

Let's take that new arrow invocation and put it back in the barnyard example:

There! Now we have the animals all talking, and safely at that, without the use of symbolic coderefs.

But look at all that common code. Each of the routines has a similar structure: a
operator and a string that contains common text, except for two of the words. It'd be nice if we could
factor out the commonality, in case we decide later to change it all to instead of .

And we actually have a way of doing that without much fuss, but we have to hear a bit more about
what the method invocation arrow is actually doing for us.

Perl version 5.8.6 documentation - perlboot

Page 2http://perldoc.perl.org

Introducing the method invocation arrow

Invoking a barnyard

Class->method method Class

use strict refs

speak print

says goes

Cow::speak, Horse::speak, Sheep::speak as before
Cow->speak;
Horse->speak;
Sheep->speak;

a Cow goes moooo!
a Horse goes neigh!
a Sheep goes baaaah!

$a = "Cow";
$a->speak; # invokes Cow->speak

sub Cow::speak {
print "a Cow goes moooo!\n";

}
sub Horse::speak {
print "a Horse goes neigh!\n";

}
sub Sheep::speak {
print "a Sheep goes baaaah!\n"

}

@pasture = qw(Cow Cow Horse Sheep Sheep);
foreach $animal (@pasture) {
$animal->speak;

}

The invocation of:

attempts to invoke subroutine as:

(If the subroutine can't be found, "inheritance" kicks in, but we'll get to that later.) This means that we
get the class name as the first parameter (the only parameter, if no arguments are given). So we can
rewrite the speaking subroutine as:

And the other two animals come out similarly:

In each case, will get the value appropriate for that subroutine. But once again, we have a lot
of similar structure. Can we factor that out even further? Yes, by calling another method in the same
class.

Let's call out from to a helper method called . This method provides the constant text for
the sound itself.

Now, when we call , we get a of in . This in turn selects the
method, which returns . But how different would this be for the ?

Perl version 5.8.6 documentation - perlboot

Page 3http://perldoc.perl.org

The extra parameter of method invocation

Calling a second method to simplify things

Class->method(@args)

Class::method("Class", @args);

sub Sheep::speak {
my $class = shift;
print "a $class goes baaaah!\n";

}

sub Cow::speak {
my $class = shift;
print "a $class goes moooo!\n";

}
sub Horse::speak {
my $class = shift;
print "a $class goes neigh!\n";

}

{ package Cow;
sub sound { "moooo" }
sub speak {

my $class = shift;
print "a $class goes ", $class->sound, "!\n"

}
}

{ package Horse;
sub sound { "neigh" }
sub speak {

my $class = shift;
print "a $class goes ", $class->sound, "!\n"

}
}

Class::method

Sheep

$class

speak sound

Cow->speak $class Cow speak
Cow->sound moooo Horse

Only the name of the package and the specific sound change. So can we somehow share the
definition for between the Cow and the Horse? Yes, with inheritance!

We'll define a common subroutine package called , with the definition for :

Then, for each animal, we say it "inherits" from , along with the animal-specific sound:

Note the added array. We'll get to that in a minute.

But what happens when we invoke now?

First, Perl constructs the argument list. In this case, it's just . Then Perl looks for .
But that's not there, so Perl checks for the inheritance array . It's there, and contains the
single name .

Perl next checks for inside instead, as in . And that's found, so Perl
invokes that subroutine with the already frozen argument list.

Inside the subroutine, becomes (the first argument). So when we get
to the step of invoking , it'll be looking for , which gets it on the first try
without looking at . Success!

This magical variable (pronounced "is a" not "ice-uh"), has declared that "is a" .
Note that it's an array, not a simple single value, because on rare occasions, it makes sense to have
more than one parent class searched for the missing methods.

If also had an , then we'd check there too. The search is recursive, depth-first,
left-to-right in each . Typically, each has only one element (multiple elements means
multiple inheritance and multiple headaches), so we get a nice tree of inheritance.

When we turn on , we'll get complaints on , since it's not a variable containing an
explicit package name, nor is it a lexical ("my") variable. We can't make it a lexical variable though (it
has to belong to the package to be found by the inheritance mechanism), so there's a couple of
straightforward ways to handle that.

The easiest is to just spell the package name out:

Or allow it as an implicitly named package variable:

Perl version 5.8.6 documentation - perlboot

Page 4http://perldoc.perl.org

speak

Animal speak

Animal

@ISA

Cow->speak

Cow Cow::speak
@Cow::ISA

Animal

speak Animal Animal::speak

Animal::speak $class Cow
$class->sound Cow->sound

@ISA

@ISA Cow Animal

Animal @ISA
@ISA @ISA

use strict @ISA

Inheriting the windpipes

A few notes about @ISA

{ package Animal;
sub speak {

my $class = shift;
print "a $class goes ", $class->sound, "!\n"

}
}

{ package Cow;
@ISA = qw(Animal);
sub sound { "moooo" }

}

@Cow::ISA = qw(Animal);

package Cow;
use vars qw(@ISA);
@ISA = qw(Animal);

If you're bringing in the class from outside, via an object-oriented module, you change:

into just:

And that's pretty darn compact.

Let's add a mouse, which can barely be heard:

which results in:

Here, has its own speaking routine, so doesn't immediately invoke
. This is known as "overriding". In fact, we didn't even need to say that a was

an at all, since all of the methods needed for are completely defined with .

But we've now duplicated some of the code from , and this can once again be a
maintenance headache. So, can we avoid that? Can we say somehow that a does everything
any other does, but add in the extra comment? Sure!

First, we can invoke the method directly:

Perl version 5.8.6 documentation - perlboot

Page 5http://perldoc.perl.org

package Cow;
use Animal;
use vars qw(@ISA);
@ISA = qw(Animal);

package Cow;
use base qw(Animal);

Animal package from before
{ package Mouse;
@ISA = qw(Animal);
sub sound { "squeak" }
sub speak {
my $class = shift;

print "a $class goes ", $class->sound, "!\n";
print "[but you can barely hear it!]\n";

}
}

Mouse->speak;

a Mouse goes squeak!
[but you can barely hear it!]

Animal package from before
{ package Mouse;
@ISA = qw(Animal);
sub sound { "squeak" }
sub speak {
my $class = shift;
Animal::speak($class);

print "[but you can barely hear it!]\n";
}

}

Overriding the methods

Mouse Mouse->speak
Animal->speak Mouse

Animal speak Mouse

Animal->speak
Mouse

Animal

Animal::speak

Note that we have to include the parameter (almost surely the value of) as the first
parameter to , since we've stopped using the method arrow. Why did we stop? Well,
if we invoke there, the first parameter to the method will be not

, and when time comes for it to call for the , it won't have the right class to come back
to this package.

Invoking directly is a mess, however. What if didn't exist before,
and was being inherited from a class mentioned in ? Because we are no longer using
the method arrow, we get one and only one chance to hit the right subroutine.

Also note that the classname is now hardwired into the subroutine selection. This is a mess if
someone maintains the code, changing for <Mouse> and didn't notice there in .
So, this is probably not the right way to go.

A better solution is to tell Perl to search from a higher place in the inheritance chain:

Ahh. This works. Using this syntax, we start with to find , and use all of 's
inheritance chain if not found immediately. And yet the first parameter will be , so the found

method will get as its first entry, and eventually work its way back to
for the details.

But this isn't the best solution. We still have to keep the and the initial search package
coordinated. Worse, if had multiple entries in , we wouldn't necessarily know which one
had actually defined . So, is there an even better way?

By changing the class to the class in that invocation, we get a search of all of our
super classes (classes listed in) automatically:

So, means look in the current package's for , invoking the first one
found. Note that it does look in the of .

So far, we've seen the method arrow syntax:

Perl version 5.8.6 documentation - perlboot

Page 6http://perldoc.perl.org

$class "Mouse"
Animal::speak
Animal->speak "Animal"

"Mouse" sound

Animal::speak Animal::speak
@Animal::ISA

Animal
@ISA Animal speak

Animal speak Animal
$class

speak Mouse Mouse::sound

@ISA
Mouse @ISA

speak

Animal SUPER
@ISA

SUPER::speak @ISA speak
@ISA $class

Starting the search from a different place

The SUPER way of doing things

Where we're at so far...

same Animal as before
{ package Mouse;
same @ISA, &sound as before
sub speak {
my $class = shift;
$class->Animal::speak;
print "[but you can barely hear it!]\n";

}
}

same Animal as before
{ package Mouse;
same @ISA, &sound as before
sub speak {
my $class = shift;
$class->SUPER::speak;
print "[but you can barely hear it!]\n";

}
}

Class->method(@args);

not

or the equivalent:

which constructs an argument list of:

and attempts to invoke

However, if is not found, then is examined (recursively) to locate a
package that does indeed contain , and that subroutine is invoked instead.

Using this simple syntax, we have class methods, (multiple) inheritance, overriding, and extending.
Using just what we've seen so far, we've been able to factor out common code, and provide a nice
way to reuse implementations with variations. This is at the core of what objects provide, but objects
also provide instance data, which we haven't even begun to cover.

Let's start with the code for the class and the class:

This lets us invoke to ripple upward to , calling back to
to get the specific sound, and the output of:

But all of our Horse objects would have to be absolutely identical. If I add a subroutine, all horses
automatically share it. That's great for making horses the same, but how do we capture the
distinctions about an individual horse? For example, suppose I want to give my first horse a name.
There's got to be a way to keep its name separate from the other horses.

We can do that by drawing a new distinction, called an "instance". An "instance" is generally created
by a class. In Perl, any reference can be an instance, so let's start with the simplest reference that
can hold a horse's name: a scalar reference.

So now is a reference to what will be the instance-specific data (the name). The final step
in turning this into a real instance is with a special operator called :

Perl version 5.8.6 documentation - perlboot

Page 7http://perldoc.perl.org

$a = "Class";
$a->method(@args);

("Class", @args)

Class::method("Class", @Args);

{ package Animal;
sub speak {
my $class = shift;
print "a $class goes ", $class->sound, "!\n"

}
}
{ package Horse;
@ISA = qw(Animal);
sub sound { "neigh" }

}

a Horse goes neigh!

my $name = "Mr. Ed";
my $talking = \$name;

bless $talking, Horse;

Class::method @Class::ISA
method

Animal Horse

Horse->speak Animal::speak
Horse::sound

$talking
bless

A horse is a horse, of course of course -- or is it?

This operator stores information about the package named into the thing pointed at by the
reference. At this point, we say is an instance of . That is, it's a specific horse. The
reference is otherwise unchanged, and can still be used with traditional dereferencing operators.

The method arrow can be used on instances, as well as names of packages (classes). So, let's get
the sound that makes:

To invoke , Perl first notes that is a blessed reference (and thus an instance). It
then constructs an argument list, in this case from just . (Later we'll see that arguments
will take their place following the instance variable, just like with classes.)

Now for the fun part: Perl takes the class in which the instance was blessed, in this case , and
uses that to locate the subroutine to invoke the method. In this case, is found directly
(without using inheritance), yielding the final subroutine invocation:

Note that the first parameter here is still the instance, not the name of the class as before. We'll get
as the return value, and that'll end up as the variable above.

If Horse::sound had not been found, we'd be wandering up the list to try to find the
method in one of the superclasses, just as for a class method. The only difference between a class
method and an instance method is whether the first parameter is an instance (a blessed reference) or
a class name (a string).

Because we get the instance as the first parameter, we can now access the instance-specific data. In
this case, let's add a way to get at the name:

Now we call for the name:

Inside , the array contains just , which the stores into . (It's
traditional to shift the first parameter off into a variable named for instance methods, so stay
with that unless you have strong reasons otherwise.) Then, gets de-referenced as a scalar ref,
yielding , and we're done with that. The result is:

Of course, if we constructed all of our horses by hand, we'd most likely make mistakes from time to
time. We're also violating one of the properties of object-oriented programming, in that the "inside
guts" of a Horse are visible. That's good if you're a veterinarian, but not if you just like to own horses.

Perl version 5.8.6 documentation - perlboot

Page 8http://perldoc.perl.org

Horse
$talking Horse

$talking

sound $talking
($talking)

Horse
Horse::sound

neigh $noise

@Horse::ISA

Horse::name @_ $talking shift $self
$self

$self
Mr. Ed

Invoking an instance method

Accessing the instance data

How to build a horse

my $noise = $talking->sound;

Horse::sound($talking)

{ package Horse;
@ISA = qw(Animal);
sub sound { "neigh" }
sub name {
my $self = shift;
$$self;

}
}

print $talking->name, " says ", $talking->sound, "\n";

Mr. Ed says neigh.

So, let's let the Horse class build a new horse:

Now with the new method, we can build a horse:

Notice we're back to a class method, so the two arguments to are and
. The operator not only blesses , it also returns the reference to , so that's fine

as a return value. And that's how to build a horse.

We've called the constructor here, so that it quickly denotes the constructor's argument as the
name for this particular . You can use different constructors with different names for different
ways of "giving birth" to the object (like maybe recording its pedigree or date of birth). However, you'll
find that most people coming to Perl from more limited languages use a single constructor named
, with various ways of interpreting the arguments to . Either style is fine, as long as you document
your particular way of giving birth to an object. (And you going to do that, right?)

But was there anything specific to in that method? No. Therefore, it's also the same recipe for
building anything else that inherited from , so let's put it there:

Ahh, but what happens if we invoke on an instance?

Perl version 5.8.6 documentation - perlboot

Page 9http://perldoc.perl.org

{ package Horse;
@ISA = qw(Animal);
sub sound { "neigh" }
sub name {
my $self = shift;
$$self;

}
sub named {
my $class = shift;
my $name = shift;
bless \$name, $class;

}
}

my $talking = Horse->named("Mr. Ed");

{ package Animal;
sub speak {
my $class = shift;
print "a $class goes ", $class->sound, "!\n"

}
sub name {
my $self = shift;
$$self;

}
sub named {
my $class = shift;
my $name = shift;
bless \$name, $class;

}
}
{ package Horse;
@ISA = qw(Animal);
sub sound { "neigh" }

}

named

Horse::named Horse Mr.
Ed bless $name $name

named
Horse

new
new

Horse
Animal

speak

were

Inheriting the constructor

We get a debugging value:

Why? Because the routine is expecting a classname as its first parameter, not an
instance. When the instance is passed in, we'll end up using a blessed scalar reference as a string,
and that shows up as we saw it just now.

All we need is for a method to detect if it is being called on a class or called on an instance. The most
straightforward way is with the operator. This returns a string (the classname) when used on a
blessed reference, and when used on a string (like a classname). Let's modify the
method first to notice the change:

Here, the operator comes in handy to select either the dereference or a derived string. Now we
can use this with either an instance or a class. Note that I've changed the first parameter holder to

to show that this is intended:

and now we'll fix to use this:

And since already worked with either a class or an instance, we're done!

Let's train our animals to eat:

Perl version 5.8.6 documentation - perlboot

Page 10http://perldoc.perl.org

my $talking = Horse->named("Mr. Ed");
$talking->speak;

a Horse=SCALAR(0xaca42ac) goes neigh!

sub name {
my $either = shift;
ref $either
? $$either # it’s an instance, return name
: "an unnamed $either"; # it’s a class, return generic

}

my $talking = Horse->named("Mr. Ed");
print Horse->name, "\n"; # prints "an unnamed Horse\n"
print $talking->name, "\n"; # prints "Mr Ed.\n"

sub speak {
my $either = shift;
print $either->name, " goes ", $either->sound, "\n";

}

{ package Animal;
sub named {
my $class = shift;
my $name = shift;
bless \$name, $class;

}
sub name {
my $either = shift;
ref $either

? $$either # it’s an instance, return name
: "an unnamed $either"; # it’s a class, return generic

}

Animal::speak

ref
undef name

?:

$either

speak

sound

Making a method work with either classes or instances

Adding parameters to a method

And now try it out:

which prints:

An instance method with parameters gets invoked with the instance, and then the list of parameters.
So that first invocation is like:

What if an instance needs more data? Most interesting instances are made of many items, each of
which can in turn be a reference or even another object. The easiest way to store these is often in a
hash. The keys of the hash serve as the names of parts of the object (often called "instance variables"
or "member variables"), and the corresponding values are, well, the values.

But how do we turn the horse into a hash? Recall that an object was any blessed reference. We can
just as easily make it a blessed hash reference as a blessed scalar reference, as long as everything
that looks at the reference is changed accordingly.

Let's make a sheep that has a name and a color:

so has , and has . But we want to make
access the name, and that's now messed up because it's expecting a scalar reference. Not to worry,
because that's pretty easy to fix up:

Perl version 5.8.6 documentation - perlboot

Page 11http://perldoc.perl.org

sub speak {
my $either = shift;
print $either->name, " goes ", $either->sound, "\n";

}
sub eat {
my $either = shift;
my $food = shift;
print $either->name, " eats $food.\n";

}
}
{ package Horse;
@ISA = qw(Animal);
sub sound { "neigh" }

}
{ package Sheep;
@ISA = qw(Animal);
sub sound { "baaaah" }

}

my $talking = Horse->named("Mr. Ed");
$talking->eat("hay");
Sheep->eat("grass");

Mr. Ed eats hay.
an unnamed Sheep eats grass.

Animal::eat($talking, "hay");

my $bad = bless { Name => "Evil", Color => "black" }, Sheep;

in Animal
sub name {
my $either = shift;

More interesting instances

$bad->{Name} Evil $bad->{Color} black $bad->name

And of course still builds a scalar sheep, so let's fix that as well:

What's this ? Well, if has only the name, we still need to set a color, so we'll
have a class-specific initial color. For a sheep, we might define it as white:

And then to keep from having to define one for each additional class, we'll define a "backstop" method
that serves as the "default default", directly in :

Now, because and were the only methods that referenced the "structure" of the object,
the rest of the methods can remain the same, so still works as before.

But having all our horses be brown would be boring. So let's add a method or two to get and set the
color.

Note the alternate way of accessing the arguments: is used in-place, rather than with a
. (This saves us a bit of time for something that may be invoked frequently.) And now we can fix that
color for Mr. Ed:

which results in:

Perl version 5.8.6 documentation - perlboot

Page 12http://perldoc.perl.org

ref $either ?
$either->{Name} :
"an unnamed $either";

}

in Animal
sub named {
my $class = shift;
my $name = shift;
my $self = { Name => $name, Color => $class->default_color };
bless $self, $class;

}

in Sheep
sub default_color { "white" }

in Animal
sub default_color { "brown" }

in Animal
sub color {
$_[0]->{Color}

}
sub set_color {
$_[0]->{Color} = $_[1];

}

my $talking = Horse->named("Mr. Ed");
$talking->set_color("black-and-white");
print $talking->name, " is colored ", $talking->color, "\n";

Mr. Ed is colored black-and-white

named

default_color named

Animal

name named
speak

$_[0] shift

A horse of a different color

So, now we have class methods, constructors, instance methods, instance data, and even accessors.
But that's still just the beginning of what Perl has to offer. We haven't even begun to talk about
accessors that double as getters and setters, destructors, indirect object notation, subclasses that add
instance data, per-class data, overloading, "isa" and "can" tests, class, and so on. That's
for the rest of the Perl documentation to cover. Hopefully, this gets you started, though.

For more information, see (for all the gritty details about Perl objects, now that you've seen the
basics), (the tutorial for those who already know objects), (dealing with class data),

(for some more tricks), and books such as Damian Conway's excellent .

Some modules which might prove interesting are Class::Accessor, Class::Class, Class::Contract,
Class::Data::Inheritable, Class::MethodMaker and Tie::SecureHash

Copyright (c) 1999, 2000 by Randal L. Schwartz and Stonehenge Consulting Services, Inc.
Permission is hereby granted to distribute this document intact with the Perl distribution, and in
accordance with the licenses of the Perl distribution; derived documents must include this copyright
notice intact.

Portions of this text have been derived from Perl Training materials originally appearing in the
course taught by instructors for Stonehenge Consulting

Services, Inc. and used with permission.

Portions of this text have been derived from materials originally appearing in and
used with permission.

Perl version 5.8.6 documentation - perlboot

Page 13http://perldoc.perl.org

Summary

UNIVERSAL

SEE ALSO

COPYRIGHT

perlobj
perltoot perltooc

perlbot Object Oriented Perl

Packages, References, Objects, and Modules

Linux Magazine

