
perlapi - autogenerated documentation for the perl public API

This file contains the documentation of the perl public API generated by embed.pl, specifically a listing
of functions, macros, flags, and variables that may be used by extension writers. The interfaces of any
functions that are not listed here are subject to change without notice. For this reason, blindly using
functions listed in proto.h is to be avoided when writing extensions.

Note that all Perl API global variables must be referenced with the prefix. Some macros are
provided for compatibility with the older, unadorned names, but this support may be disabled in a
future release.

The listing is alphabetical, case insensitive.

GIMME

A backward-compatible version of which can only return or
; in a void context, it returns . Deprecated. Use instead.

GIMME_V

The XSUB-writer's equivalent to Perl's . Returns , or
for void, scalar or list context, respectively.

G_ARRAY

Used to indicate list context. See , and .

G_DISCARD

Indicates that arguments returned from a callback should be discarded. See .

G_EVAL

Used to force a Perl wrapper around a callback. See .

G_NOARGS

Indicates that no arguments are being sent to a callback. See .

G_SCALAR

Used to indicate scalar context. See , , and .

G_VOID

Used to indicate void context. See and .

AvFILL

Same as . Deprecated, use instead.

av_clear

Clears an array, making it empty. Does not free the memory used by the array itself.

Perl version 5.8.6 documentation - perlapi

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

"Gimme" Values

Array Manipulation Functions

PL_

GIMME_V G_SCALAR
G_ARRAY G_SCALAR GIMME_V

wantarray G_VOID G_SCALAR
G_ARRAY

GIMME_V GIMME

eval

GIMME_V GIMME

GIMME_V

av_len() av_len()

U32 GIMME

U32 GIMME_V

int AvFILL(AV* av)

void av_clear(AV* ar)

perlcall

perlcall

perlcall

perlcall

perlcall

perlcall

av_delete

Deletes the element indexed by from the array. Returns the deleted element. If
equals , the element is freed and null is returned.

av_exists

Returns true if the element indexed by has been initialized.

This relies on the fact that uninitialized array elements are set to .

av_extend

Pre-extend an array. The is the index to which the array should be extended.

av_fetch

Returns the SV at the specified index in the array. The is the index. If is set
then the fetch will be part of a store. Check that the return value is non-null before
dereferencing it to a .

See for more
information on how to use this function on tied arrays.

av_fill

Ensure than an array has a given number of elements, equivalent to Perl's
.

av_len

Returns the highest index in the array. Returns -1 if the array is empty.

av_make

Creates a new AV and populates it with a list of SVs. The SVs are copied into the
array, so they may be freed after the call to av_make. The new AV will have a
reference count of 1.

av_pop

Pops an SV off the end of the array. Returns if the array is empty.

av_push

Pushes an SV onto the end of the array. The array will grow automatically to
accommodate the addition.

Perl version 5.8.6 documentation - perlapi

Page 2http://perldoc.perl.org

SV* av_delete(AV* ar, I32 key, I32 flags)

bool av_exists(AV* ar, I32 key)

void av_extend(AV* ar, I32 key)

SV** av_fetch(AV* ar, I32 key, I32 lval)

void av_fill(AV* ar, I32 fill)

I32 av_len(AV* ar)

AV* av_make(I32 size, SV** svp)

SV* av_pop(AV* ar)

void av_push(AV* ar, SV* val)

key
flags G_DISCARD

key

&PL_sv_undef

key

key lval

SV*

$#array
= $fill;

&PL_sv_undef

"Understanding the Magic of Tied Hashes and Arrays" in perlguts

av_shift

Shifts an SV off the beginning of the array.

av_store

Stores an SV in an array. The array index is specified as . The return value will be
NULL if the operation failed or if the value did not need to be actually stored within the
array (as in the case of tied arrays). Otherwise it can be dereferenced to get the
original . Note that the caller is responsible for suitably incrementing the reference
count of before the call, and decrementing it if the function returned NULL.

See for more
information on how to use this function on tied arrays.

av_undef

Undefines the array. Frees the memory used by the array itself.

av_unshift

Unshift the given number of values onto the beginning of the array. The array
will grow automatically to accommodate the addition. You must then use to
assign values to these new elements.

get_av

Returns the AV of the specified Perl array. If is set and the Perl variable does
not exist then it will be created. If is not set and the variable does not exist
then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

newAV

Creates a new AV. The reference count is set to 1.

sortsv

Sort an array. Here is an example:

See lib/sort.pm for details about controlling the sorting algorithm.

call_argv

Performs a callback to the specified Perl sub. See .

NOTE: the perl_ form of this function is deprecated.

Perl version 5.8.6 documentation - perlapi

Page 3http://perldoc.perl.org

SV* av_shift(AV* ar)

SV** av_store(AV* ar, I32 key, SV* val)

void av_undef(AV* ar)

void av_unshift(AV* ar, I32 num)

AV* get_av(const char* name, I32 create)

AV* newAV()

sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);

void sortsv(SV ** array, size_t num_elts, SVCOMPARE_t cmp)

I32 call_argv(const char* sub_name, I32 flags, char** argv)

key

SV*
val

undef
av_store

create
create

"Understanding the Magic of Tied Hashes and Arrays" in perlguts

perlcall

Callback Functions

call_method

Performs a callback to the specified Perl method. The blessed object must be on the
stack. See .

NOTE: the perl_ form of this function is deprecated.

call_pv

Performs a callback to the specified Perl sub. See .

NOTE: the perl_ form of this function is deprecated.

call_sv

Performs a callback to the Perl sub whose name is in the SV. See .

NOTE: the perl_ form of this function is deprecated.

ENTER

Opening bracket on a callback. See and .

eval_pv

Tells Perl to the given string and return an SV* result.

NOTE: the perl_ form of this function is deprecated.

eval_sv

Tells Perl to the string in the SV.

NOTE: the perl_ form of this function is deprecated.

FREETMPS

Closing bracket for temporaries on a callback. See and .

LEAVE

Closing bracket on a callback. See and .

SAVETMPS

Opening bracket for temporaries on a callback. See and .

isALNUM

Returns a boolean indicating whether the C is an ASCII alphanumeric character

Perl version 5.8.6 documentation - perlapi

Page 4http://perldoc.perl.org

I32 call_method(const char* methname, I32 flags)

I32 call_pv(const char* sub_name, I32 flags)

I32 call_sv(SV* sv, I32 flags)

ENTER;

SV* eval_pv(const char* p, I32 croak_on_error)

I32 eval_sv(SV* sv, I32 flags)

FREETMPS;

LEAVE;

SAVETMPS;

perlcall

perlcall

perlcall

perlcall

perlcall

perlcall

perlcall

LEAVE

eval

eval

SAVETMPS

ENTER

FREETMPS

char

Character classes

(including underscore) or digit.

isALPHA

Returns a boolean indicating whether the C is an ASCII alphabetic character.

isDIGIT

Returns a boolean indicating whether the C is an ASCII digit.

isLOWER

Returns a boolean indicating whether the C is a lowercase character.

isSPACE

Returns a boolean indicating whether the C is whitespace.

isUPPER

Returns a boolean indicating whether the C is an uppercase character.

toLOWER

Converts the specified character to lowercase.

toUPPER

Converts the specified character to uppercase.

perl_clone

Create and return a new interpreter by cloning the current one.

perl_clone takes these flags as parameters:

CLONEf_COPY_STACKS - is used to, well, copy the stacks also, without it we only
clone the data and zero the stacks, with it we copy the stacks and the new perl
interpreter is ready to run at the exact same point as the previous one. The
pseudo-fork code uses COPY_STACKS while the threads->new doesn't.

CLONEf_KEEP_PTR_TABLE perl_clone keeps a ptr_table with the pointer of the old
variable as a key and the new variable as a value, this allows it to check if something
has been cloned and not clone it again but rather just use the value and increase the
refcount. If KEEP_PTR_TABLE is not set then perl_clone will kill the ptr_table using
the function ,
reason to keep it around is if you want to dup some of your own variable who are
outside the graph perl scans, example of this code is in threads.xs create

Perl version 5.8.6 documentation - perlapi

Page 5http://perldoc.perl.org

bool isALNUM(char ch)

bool isALPHA(char ch)

bool isDIGIT(char ch)

bool isLOWER(char ch)

bool isSPACE(char ch)

bool isUPPER(char ch)

char toLOWER(char ch)

char toUPPER(char ch)

char

char

char

char

char

ptr_table_free(PL_ptr_table); PL_ptr_table = NULL;

Cloning an interpreter

CLONEf_CLONE_HOST This is a win32 thing, it is ignored on unix, it tells perls
win32host code (which is c++) to clone itself, this is needed on win32 if you want to run
two threads at the same time, if you just want to do some stuff in a separate perl
interpreter and then throw it away and return to the original one, you don't need to do
anything.

CvSTASH

Returns the stash of the CV.

get_cv

Returns the CV of the specified Perl subroutine. If is set and the Perl
subroutine does not exist then it will be declared (which has the same effect as saying

). If is not set and the subroutine does not exist then NULL is
returned.

NOTE: the perl_ form of this function is deprecated.

cv_undef

Clear out all the active components of a CV. This can happen either by an explicit
, or by the reference count going to zero. In the former case, we keep the

CvOUTSIDE pointer, so that any anonymous children can still follow the full lexical
scope chain.

load_module

Loads the module whose name is pointed to by the string part of name. Note that the
actual module name, not its filename, should be given. Eg, "Foo::Bar" instead of
"Foo/Bar.pm". flags can be any of PERL_LOADMOD_DENY,
PERL_LOADMOD_NOIMPORT, or PERL_LOADMOD_IMPORT_OPS (or 0 for no
flags). ver, if specified, provides version semantics similar to

. The optional trailing SV* arguments can be used to specify arguments to
the module's import() method, similar to .

nothreadhook

Stub that provides thread hook for perl_destruct when there are no threads.

perl_alloc

Allocates a new Perl interpreter. See .

perl_construct

Initializes a new Perl interpreter. See .

Perl version 5.8.6 documentation - perlapi

Page 6http://perldoc.perl.org

PerlInterpreter* perl_clone(PerlInterpreter* interp, UV flags)

HV* CvSTASH(CV* cv)

CV* get_cv(const char* name, I32 create)

void cv_undef(CV* cv)

void load_module(U32 flags, SV* name, SV* ver, ...)

int nothreadhook()

PerlInterpreter* perl_alloc()

CV Manipulation Functions

Embedding Functions

create

sub name; create

undef &foo

use Foo::Bar
VERSION

use Foo::Bar VERSION LIST

perlembed

perlembed

perl_destruct

Shuts down a Perl interpreter. See .

perl_free

Releases a Perl interpreter. See .

perl_parse

Tells a Perl interpreter to parse a Perl script. See .

perl_run

Tells a Perl interpreter to run. See .

require_pv

Tells Perl to the file named by the string argument. It is analogous to the Perl
code . It's even implemented that way; consider using
load_module instead.

NOTE: the perl_ form of this function is deprecated.

packlist

The engine implementing pack() Perl function.

pack_cat

The engine implementing pack() Perl function. Note: parameters next_in_list and flags
are not used. This call should not be used; use packlist instead.

unpackstring

The engine implementing unpack() Perl function. puts the extracted
list items on the stack and returns the number of elements. Issue before and

after the call to this function.

unpack_str

The engine implementing unpack() Perl function. Note: parameters strbeg, new_s and

Perl version 5.8.6 documentation - perlapi

Page 7http://perldoc.perl.org

void perl_construct(PerlInterpreter* interp)

int perl_destruct(PerlInterpreter* interp)

void perl_free(PerlInterpreter* interp)

int perl_parse(PerlInterpreter* interp, XSINIT_t xsinit, int
argc, char** argv, char** env)

int perl_run(PerlInterpreter* interp)

void require_pv(const char* pv)

void packlist(SV *cat, char *pat, char *patend, SV **beglist,
SV **endlist)

void pack_cat(SV *cat, char *pat, char *patend, SV **beglist,
SV **endlist, SV ***next_in_list, U32 flags)

I32 unpackstring(char *pat, char *patend, char *s, char
*strend, U32 flags)

perlembed

perlembed

perlembed

perlembed

require
eval "require ’$file’"

unpackstring
PUTBACK

SPAGAIN

Functions in file pp_pack.c

ocnt are not used. This call should not be used, use unpackstring instead.

PL_modglobal

is a general purpose, interpreter global HV for use by extensions that
need to keep information on a per-interpreter basis. In a pinch, it can also be used as a
symbol table for extensions to share data among each other. It is a good idea to use
keys prefixed by the package name of the extension that owns the data.

PL_na

A convenience variable which is typically used with when one doesn't care about
the length of the string. It is usually more efficient to either declare a local variable and
use that instead or to use the macro.

PL_sv_no

This is the SV. See . Always refer to this as .

PL_sv_undef

This is the SV. Always refer to this as .

PL_sv_yes

This is the SV. See . Always refer to this as .

GvSV

Return the SV from the GV.

gv_fetchmeth

Returns the glob with the given and a defined subroutine or . The glob lives
in the given , or in the stashes accessible via @ISA and UNIVERSAL::.

The argument should be either 0 or -1. If , as a side-effect creates a
glob with the given in the given which in the case of success contains an
alias for the subroutine, and sets up caching info for this glob. Similarly for all the
searched stashes.

This function grants token as a postfix of the stash name. The GV returned
from may be a method cache entry, which is not visible to Perl code.
So when calling , you should not use the GV directly; instead, you should use
the method's CV, which can be obtained from the GV with the macro.

Perl version 5.8.6 documentation - perlapi

Page 8http://perldoc.perl.org

I32 unpack_str(char *pat, char *patend, char *s, char *strbeg,
char *strend, char **new_s, I32 ocnt, U32 flags)

HV* PL_modglobal

STRLEN PL_na

SV PL_sv_no

SV PL_sv_undef

SV PL_sv_yes

SV* GvSV(GV* gv)

GV* gv_fetchmeth(HV* stash, const char* name, STRLEN len, I32

Global Variables

GV Functions

PL_modglobal

SvPV

SvPV_nolen

false PL_sv_yes &PL_sv_no

undef &PL_sv_undef

true PL_sv_no &PL_sv_yes

name NULL
stash

level level==0
name stash

"SUPER"
gv_fetchmeth

call_sv
GvCV

gv_fetchmethod

See .

gv_fetchmethod_autoload

Returns the glob which contains the subroutine to call to invoke the method on the
. In fact in the presence of autoloading this may be the glob for "AUTOLOAD".

In this case the corresponding variable $AUTOLOAD is already setup.

The third parameter of determines whether
AUTOLOAD lookup is performed if the given method is not present: non-zero means
yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling

is equivalent to calling with a
non-zero parameter.

These functions grant token as a prefix of the method name. Note that if you
want to keep the returned glob for a long time, you need to check for it being
"AUTOLOAD", since at the later time the call may load a different subroutine due to
$AUTOLOAD changing its value. Use the glob created via a side effect to do this.

These functions have the same side-effects and as with .
should be writable if contains or . The warning against passing the GV

returned by to apply equally to these functions.

gv_fetchmeth_autoload

Same as gv_fetchmeth(), but looks for autoloaded subroutines too. Returns a glob for
the subroutine.

For an autoloaded subroutine without a GV, will create a GV even if . For
an autoloaded subroutine without a stub, GvCV() of the result may be zero.

gv_stashpv

Returns a pointer to the stash for a specified package. should be a valid UTF-8
string. If is set then the package will be created if it does not already exist. If

is not set and the package does not exist then NULL is returned.

gv_stashsv

Returns a pointer to the stash for a specified package, which must be a valid UTF-8
string. See .

Nullav

Null AV pointer.

Nullch

Null character pointer.

Perl version 5.8.6 documentation - perlapi

Page 9http://perldoc.perl.org

level)

GV* gv_fetchmethod(HV* stash, const char* name)

GV* gv_fetchmethod_autoload(HV* stash, const char* name, I32
autoload)

GV* gv_fetchmeth_autoload(HV* stash, const char* name, STRLEN
len, I32 level)

HV* gv_stashpv(const char* name, I32 create)

HV* gv_stashsv(SV* sv, I32 create)

gv_fetchmethod_autoload

stash

gv_fetchmethod_autoload

gv_fetchmethod gv_fetchmethod_autoload
autoload

"SUPER"

gv_fetchmeth level==0
name ’:’ ’ ’’

gv_fetchmeth call_sv

level < 0

name
create

create

gv_stashpv

Handy Values

Nullcv

Null CV pointer.

Nullhv

Null HV pointer.

Nullsv

Null SV pointer.

get_hv

Returns the HV of the specified Perl hash. If is set and the Perl variable does
not exist then it will be created. If is not set and the variable does not exist
then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

HEf_SVKEY

This flag, used in the length slot of hash entries and magic structures, specifies the
structure contains an pointer where a pointer is to be expected. (For
information only--not to be used).

HeHASH

Returns the computed hash stored in the hash entry.

HeKEY

Returns the actual pointer stored in the key slot of the hash entry. The pointer may be
either or , depending on the value of . Can be assigned to. The

or macros are usually preferable for finding the value of a key.

HeKLEN

If this is negative, and amounts to , it indicates the entry holds an key.
Otherwise, holds the actual length of the key. Can be assigned to. The macro
is usually preferable for finding key lengths.

HePV

Returns the key slot of the hash entry as a value, doing any necessary
dereferencing of possibly keys. The length of the string is placed in (this is a
macro, so do use). If you do not care about what the length of the key is, you
may use the global variable , though this is rather less efficient than using a
local variable. Remember though, that hash keys in perl are free to contain embedded
nulls, so using or similar is not a good way to find the length of hash keys.
This is very similar to the macro described elsewhere in this document.

HeSVKEY

Returns the key as an , or if the hash entry does not contain an key.

Perl version 5.8.6 documentation - perlapi

Page 10http://perldoc.perl.org

Hash Manipulation Functions

create
create

SV* char*

char* SV* HeKLEN()
HePV() HeSVKEY()

HEf_SVKEY SV*
HePV()

char*
SV* len

&len
PL_na

strlen()
SvPV()

SV* Nullsv SV*

HV* get_hv(const char* name, I32 create)

U32 HeHASH(HE* he)

void* HeKEY(HE* he)

STRLEN HeKLEN(HE* he)

char* HePV(HE* he, STRLEN len)

not

HeSVKEY_force

Returns the key as an . Will create and return a temporary mortal if the hash
entry contains only a key.

HeSVKEY_set

Sets the key to a given , taking care to set the appropriate flags to indicate the
presence of an key, and returns the same .

HeVAL

Returns the value slot (type) stored in the hash entry.

HvNAME

Returns the package name of a stash. See , .

hv_clear

Clears a hash, making it empty.

hv_clear_placeholders

Clears any placeholders from a hash. If a restricted hash has any of its keys marked
as readonly and the key is subsequently deleted, the key is not actually deleted but is
marked by assigning it a value of &PL_sv_placeholder. This tags it so it will be ignored
by future operations such as iterating over the hash, but will still allow the hash to have
a value reassigned to the key at some future point. This function clears any such
placeholder keys from the hash. See Hash::Util::lock_keys() for an example of its use.

hv_delete

Deletes a key/value pair in the hash. The value SV is removed from the hash and
returned to the caller. The is the length of the key. The value will normally
be zero; if set to G_DISCARD then NULL will be returned.

hv_delete_ent

Deletes a key/value pair in the hash. The value SV is removed from the hash and
returned to the caller. The value will normally be zero; if set to G_DISCARD
then NULL will be returned. can be a valid precomputed hash value, or 0 to ask
for it to be computed.

hv_exists

Perl version 5.8.6 documentation - perlapi

Page 11http://perldoc.perl.org

SV* HeSVKEY(HE* he)

SV* HeSVKEY_force(HE* he)

SV* HeSVKEY_set(HE* he, SV* sv)

SV* HeVAL(HE* he)

char* HvNAME(HV* stash)

void hv_clear(HV* tb)

void hv_clear_placeholders(HV* hb)

SV* hv_delete(HV* tb, const char* key, I32 klen, I32 flags)

SV* hv_delete_ent(HV* tb, SV* key, I32 flags, U32 hash)

SV* SV*
char*

SV*
SV* SV*

SV*

SvSTASH CvSTASH

klen flags

flags
hash

Returns a boolean indicating whether the specified hash key exists. The is the
length of the key.

hv_exists_ent

Returns a boolean indicating whether the specified hash key exists. can be a
valid precomputed hash value, or 0 to ask for it to be computed.

hv_fetch

Returns the SV which corresponds to the specified key in the hash. The is the
length of the key. If is set then the fetch will be part of a store. Check that the
return value is non-null before dereferencing it to an .

See for more
information on how to use this function on tied hashes.

hv_fetch_ent

Returns the hash entry which corresponds to the specified key in the hash. must
be a valid precomputed hash number for the given , or 0 if you want the function to
compute it. IF is set then the fetch will be part of a store. Make sure the return
value is non-null before accessing it. The return value when is a tied hash is a
pointer to a static location, so be sure to make a copy of the structure if you need to
store it somewhere.

See for more
information on how to use this function on tied hashes.

hv_iterinit

Prepares a starting point to traverse a hash table. Returns the number of keys in the
hash (i.e. the same as). The return value is currently only meaningful for
hashes without tie magic.

NOTE: Before version 5.004_65, used to return the number of hash
buckets that happen to be in use. If you still need that esoteric value, you can get it
through the macro .

hv_iterkey

Returns the key from the current position of the hash iterator. See .

hv_iterkeysv

Returns the key as an from the current position of the hash iterator. The return
value will always be a mortal copy of the key. Also see .

hv_iternext

Returns entries from a hash iterator. See .

Perl version 5.8.6 documentation - perlapi

Page 12http://perldoc.perl.org

klen

hash

klen
lval

SV*

hash
key

lval
tb

HvKEYS(tb)

hv_iterinit

HvFILL(tb)

hv_iterinit

SV*
hv_iterinit

hv_iterinit

bool hv_exists(HV* tb, const char* key, I32 klen)

bool hv_exists_ent(HV* tb, SV* key, U32 hash)

SV** hv_fetch(HV* tb, const char* key, I32 klen, I32 lval)

HE* hv_fetch_ent(HV* tb, SV* key, I32 lval, U32 hash)

I32 hv_iterinit(HV* tb)

char* hv_iterkey(HE* entry, I32* retlen)

SV* hv_iterkeysv(HE* entry)

"Understanding the Magic of Tied Hashes and Arrays" in perlguts

"Understanding the Magic of Tied Hashes and Arrays" in perlguts

You may call or on the hash entry that the iterator
currently points to, without losing your place or invalidating your iterator. Note that in
this case the current entry is deleted from the hash with your iterator holding the last
reference to it. Your iterator is flagged to free the entry on the next call to

, so you must not discard your iterator immediately else the entry will
leak - call to trigger the resource deallocation.

hv_iternextsv

Performs an , , and in one operation.

hv_iternext_flags

Returns entries from a hash iterator. See and . The
value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is set

the placeholders keys (for restricted hashes) will be returned in addition to normal
keys. By default placeholders are automatically skipped over. Currently a placeholder
is implemented with a value that is . Note that the
implementation of placeholders and restricted hashes may change, and the
implementation currently is insufficiently abstracted for any change to be tidy.

NOTE: this function is experimental and may change or be removed without notice.

hv_iterval

Returns the value from the current position of the hash iterator. See .

hv_magic

Adds magic to a hash. See .

hv_scalar

Evaluates the hash in scalar context and returns the result. Handles magic when the
hash is tied.

hv_store

Stores an SV in a hash. The hash key is specified as and is the length of
the key. The parameter is the precomputed hash value; if it is zero then Perl will
compute it. The return value will be NULL if the operation failed or if the value did not
need to be actually stored within the hash (as in the case of tied hashes). Otherwise it
can be dereferenced to get the original . Note that the caller is responsible for
suitably incrementing the reference count of before the call, and decrementing it if
the function returned NULL. Effectively a successful hv_store takes ownership of one
reference to . This is usually what you want; a newly created SV has a reference
count of one, so if all your code does is create SVs then store them in a hash, hv_store
will own the only reference to the new SV, and your code doesn't need to do anything
further to tidy up. hv_store is not implemented as a call to hv_store_ent, and does not
create a temporary SV for the key, so if your key data is not already in SV form then
use hv_store in preference to hv_store_ent.

Perl version 5.8.6 documentation - perlapi

Page 13http://perldoc.perl.org

hv_delete hv_delete_ent

hv_iternext
hv_iternext

hv_iternext hv_iterkey hv_iterval

hv_iterinit hv_iternext
flags

&Perl_sv_placeholder

hv_iterkey

sv_magic

key klen
hash

SV*
val

val

HE* hv_iternext(HV* tb)

SV* hv_iternextsv(HV* hv, char** key, I32* retlen)

HE* hv_iternext_flags(HV* tb, I32 flags)

SV* hv_iterval(HV* tb, HE* entry)

void hv_magic(HV* hv, GV* gv, int how)

SV* hv_scalar(HV* hv)

See for more
information on how to use this function on tied hashes.

hv_store_ent

Stores in a hash. The hash key is specified as . The parameter is the
precomputed hash value; if it is zero then Perl will compute it. The return value is the
new hash entry so created. It will be NULL if the operation failed or if the value did not
need to be actually stored within the hash (as in the case of tied hashes). Otherwise
the contents of the return value can be accessed using the macros described
here. Note that the caller is responsible for suitably incrementing the reference count
of before the call, and decrementing it if the function returned NULL. Effectively a
successful hv_store_ent takes ownership of one reference to . This is usually what
you want; a newly created SV has a reference count of one, so if all your code does is
create SVs then store them in a hash, hv_store will own the only reference to the new
SV, and your code doesn't need to do anything further to tidy up. Note that
hv_store_ent only reads the ; unlike it does not take ownership of it, so
maintaining the correct reference count on is entirely the caller's responsibility.
hv_store is not implemented as a call to hv_store_ent, and does not create a
temporary SV for the key, so if your key data is not already in SV form then use
hv_store in preference to hv_store_ent.

See for more
information on how to use this function on tied hashes.

hv_undef

Undefines the hash.

newHV

Creates a new HV. The reference count is set to 1.

mg_clear

Clear something magical that the SV represents. See .

mg_copy

Copies the magic from one SV to another. See .

mg_find

Finds the magic pointer for type matching the SV. See .

mg_free

Perl version 5.8.6 documentation - perlapi

Page 14http://perldoc.perl.org

"Understanding the Magic of Tied Hashes and Arrays" in perlguts

"Understanding the Magic of Tied Hashes and Arrays" in perlguts

SV** hv_store(HV* tb, const char* key, I32 klen, SV* val, U32
hash)

HE* hv_store_ent(HV* tb, SV* key, SV* val, U32 hash)

void hv_undef(HV* tb)

HV* newHV()

int mg_clear(SV* sv)

int mg_copy(SV* sv, SV* nsv, const char* key, I32 klen)

MAGIC* mg_find(SV* sv, int type)

val key hash

He?

val
val

key val
key

sv_magic

sv_magic

sv_magic

Magical Functions

Free any magic storage used by the SV. See .

mg_get

Do magic after a value is retrieved from the SV. See .

mg_length

Report on the SV's length. See .

mg_magical

Turns on the magical status of an SV. See .

mg_set

Do magic after a value is assigned to the SV. See .

SvGETMAGIC

Invokes on an SV if it has 'get' magic. This macro evaluates its argument
more than once.

SvLOCK

Arranges for a mutual exclusion lock to be obtained on sv if a suitable module has
been loaded.

SvSETMAGIC

Invokes on an SV if it has 'set' magic. This macro evaluates its argument
more than once.

SvSetMagicSV

Like , but does any set magic required afterwards.

SvSetMagicSV_nosteal

Like , but does any set magic required afterwards.

SvSetSV

Calls if dsv is not the same as ssv. May evaluate arguments more than
once.

Perl version 5.8.6 documentation - perlapi

Page 15http://perldoc.perl.org

sv_magic

sv_magic

sv_magic

sv_magic

sv_magic

mg_get

mg_set

SvSetSV

SvSetSV_nosteal

sv_setsv

int mg_free(SV* sv)

int mg_get(SV* sv)

U32 mg_length(SV* sv)

void mg_magical(SV* sv)

int mg_set(SV* sv)

void SvGETMAGIC(SV* sv)

void SvLOCK(SV* sv)

void SvSETMAGIC(SV* sv)

void SvSetMagicSV(SV* dsb, SV* ssv)

void SvSetMagicSV_nosteal(SV* dsv, SV* ssv)

void SvSetSV(SV* dsb, SV* ssv)

SvSetSV_nosteal

Calls a non-destructive version of if dsv is not the same as ssv. May
evaluate arguments more than once.

SvSHARE

Arranges for sv to be shared between threads if a suitable module has been loaded.

SvUNLOCK

Releases a mutual exclusion lock on sv if a suitable module has been loaded.

Copy

The XSUB-writer's interface to the C function. The is the source, is
the destination, is the number of items, and is the type. May fail on
overlapping copies. See also .

CopyD

Like but returns dest. Useful for encouraging compilers to tail-call optimise.

Move

The XSUB-writer's interface to the C function. The is the source,
is the destination, is the number of items, and is the type. Can do
overlapping moves. See also .

MoveD

Like but returns dest. Useful for encouraging compilers to tail-call optimise.

New

The XSUB-writer's interface to the C function.

Newc

The XSUB-writer's interface to the C function, with cast.

Newz

The XSUB-writer's interface to the C function. The allocated memory is
zeroed with .

Perl version 5.8.6 documentation - perlapi

Page 16http://perldoc.perl.org

void SvSetSV_nosteal(SV* dsv, SV* ssv)

void SvSHARE(SV* sv)

void SvUNLOCK(SV* sv)

void Copy(void* src, void* dest, int nitems, type)

void * CopyD(void* src, void* dest, int nitems, type)

void Move(void* src, void* dest, int nitems, type)

void * MoveD(void* src, void* dest, int nitems, type)

void New(int id, void* ptr, int nitems, type)

void Newc(int id, void* ptr, int nitems, type, cast)

void Newz(int id, void* ptr, int nitems, type)

sv_setsv

memcpy src dest
nitems type

Move

Copy

memmove src dest
nitems type

Copy

Move

malloc

malloc

malloc
memzero

Memory Management

Poison

Fill up memory with a pattern (byte 0xAB over and over again) that hopefully catches
attempts to access uninitialized memory.

Renew

The XSUB-writer's interface to the C function.

Renewc

The XSUB-writer's interface to the C function, with cast.

Safefree

The XSUB-writer's interface to the C function.

savepv

Perl's version of . Returns a pointer to a newly allocated string which is a
duplicate of . The size of the string is determined by . The memory
allocated for the new string can be freed with the function.

savepvn

Perl's version of what would be if it existed. Returns a pointer to a newly
allocated string which is a duplicate of the first bytes from . The memory
allocated for the new string can be freed with the function.

savesharedpv

A version of which allocates the duplicate string in memory which is shared
between threads.

StructCopy

This is an architecture-independent macro to copy one structure to another.

Zero

The XSUB-writer's interface to the C function. The is the destination,
is the number of items, and is the type.

ZeroD

Like but returns dest. Useful for encouraging compilers to tail-call optimise.

Perl version 5.8.6 documentation - perlapi

Page 17http://perldoc.perl.org

void Poison(void* dest, int nitems, type)

void Renew(void* ptr, int nitems, type)

void Renewc(void* ptr, int nitems, type, cast)

void Safefree(void* ptr)

char* savepv(const char* pv)

char* savepvn(const char* pv, I32 len)

char* savesharedpv(const char* pv)

void StructCopy(type src, type dest, type)

void Zero(void* dest, int nitems, type)

void * ZeroD(void* dest, int nitems, type)

realloc

realloc

free

strdup()
pv strlen()

Safefree()

strndup()
len pv
Safefree()

savepv()

memzero dest
nitems type

Zero

fbm_compile

Analyses the string in order to make fast searches on it using fbm_instr() -- the
Boyer-Moore algorithm.

fbm_instr

Returns the location of the SV in the string delimited by and . It returns
if the string can't be found. The does not have to be fbm_compiled, but the

search will not be as fast then.

form

Takes a sprintf-style format pattern and conventional (non-SV) arguments and returns
the formatted string.

can be used any place a string (char *) is required:

Uses a single private buffer so if you want to format several strings you must explicitly
copy the earlier strings away (and free the copies when you are done).

getcwd_sv

Fill the sv with current working directory

strEQ

Test two strings to see if they are equal. Returns true or false.

strGE

Test two strings to see if the first, , is greater than or equal to the second, .
Returns true or false.

strGT

Test two strings to see if the first, , is greater than the second, . Returns true or
false.

strLE

Test two strings to see if the first, , is less than or equal to the second, . Returns
true or false.

Perl version 5.8.6 documentation - perlapi

Page 18http://perldoc.perl.org

void fbm_compile(SV* sv, U32 flags)

char* fbm_instr(unsigned char* big, unsigned char* bigend, SV*
littlesv, U32 flags)

(char *) Perl_form(pTHX_ const char* pat, ...)

char * s = Perl_form("%d.%d",major,minor);

char* form(const char* pat, ...)

int getcwd_sv(SV* sv)

bool strEQ(char* s1, char* s2)

bool strGE(char* s1, char* s2)

bool strGT(char* s1, char* s2)

bool strLE(char* s1, char* s2)

Miscellaneous Functions

str strend
Nullch sv

s1 s2

s1 s2

s1 s2

strLT

Test two strings to see if the first, , is less than the second, . Returns true or
false.

strNE

Test two strings to see if they are different. Returns true or false.

strnEQ

Test two strings to see if they are equal. The parameter indicates the number of
bytes to compare. Returns true or false. (A wrapper for).

strnNE

Test two strings to see if they are different. The parameter indicates the number of
bytes to compare. Returns true or false. (A wrapper for).

sv_nolocking

Dummy routine which "locks" an SV when there is no locking module present. Exists to
avoid test for a NULL function pointer and because it could potentially warn under
some level of strict-ness.

sv_nosharing

Dummy routine which "shares" an SV when there is no sharing module present. Exists
to avoid test for a NULL function pointer and because it could potentially warn under
some level of strict-ness.

sv_nounlocking

Dummy routine which "unlocks" an SV when there is no locking module present. Exists
to avoid test for a NULL function pointer and because it could potentially warn under
some level of strict-ness.

grok_bin

converts a string representing a binary number to numeric form.

On entry and give the string to scan, gives conversion flags, and
should be NULL or a pointer to an NV. The scan stops at the end of the string, or the
first invalid character. Unless is set in ,
encountering an invalid character will also trigger a warning. On return is set to the
length of the scanned string, and gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and
nothing is written to . If the value is > UV_MAX returns UV_MAX,
sets in the output flags, and writes the value to

Perl version 5.8.6 documentation - perlapi

Page 19http://perldoc.perl.org

bool strLT(char* s1, char* s2)

bool strNE(char* s1, char* s2)

bool strnEQ(char* s1, char* s2, STRLEN len)

bool strnNE(char* s1, char* s2, STRLEN len)

void sv_nolocking(SV *)

void sv_nosharing(SV *)

void sv_nounlocking(SV *)

s1 s2

len
strncmp

len
strncmp

PERL_SCAN_SILENT_ILLDIGIT

grok_bin
PERL_SCAN_GREATER_THAN_UV_MAX

Numeric functions

start *len *flags result

*flags
*len

*flags

*result

(or the value is discarded if is NULL).

The binary number may optionally be prefixed with "0b" or "b" unless
is set in on entry. If

is set in then the binary number may use
'_' characters to separate digits.

grok_hex

converts a string representing a hex number to numeric form.

On entry and give the string to scan, gives conversion flags, and
should be NULL or a pointer to an NV. The scan stops at the end of the string, or the
first invalid character. Unless is set in ,
encountering an invalid character will also trigger a warning. On return is set to the
length of the scanned string, and gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and
nothing is written to . If the value is > UV_MAX returns UV_MAX,
sets in the output flags, and writes the value to

(or the value is discarded if is NULL).

The hex number may optionally be prefixed with "0x" or "x" unless
is set in on entry. If

is set in then the hex number may use '_'
characters to separate digits.

grok_number

Recognise (or not) a number. The type of the number is returned (0 if unrecognised),
otherwise it is a bit-ORed combination of IS_NUMBER_IN_UV,
IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT,
IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h).

If the value of the number can fit an in UV, it is returned in the *valuep
IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV
will never be set unless *valuep is valid, but *valuep may have been assigned to during
processing even though IS_NUMBER_IN_UV is not set on return. If valuep is NULL,
IS_NUMBER_IN_UV will be set for the same cases as when valuep is non-NULL, but
no actual assignment (or SEGV) will occur.

IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were
seen (in which case *valuep gives the true value truncated to an integer), and
IS_NUMBER_NEG if the number is negative (in which case *valuep holds the absolute
value). IS_NUMBER_IN_UV is not set if e notation was used or the number is larger
than a UV.

grok_numeric_radix

Scan and skip for a numeric decimal separator (radix).

grok_oct

converts a string representing an octal number to numeric form.

On entry and give the string to scan, gives conversion flags, and
should be NULL or a pointer to an NV. The scan stops at the end of the string, or the

Perl version 5.8.6 documentation - perlapi

Page 20http://perldoc.perl.org

*result result

*flags
*flags

start *len *flags result

*flags
*len

*flags

*result

*result result

*flags
*flags

start *len *flags result

PERL_SCAN_DISALLOW_PREFIX
PERL_SCAN_ALLOW_UNDERSCORES

PERL_SCAN_SILENT_ILLDIGIT

grok_hex
PERL_SCAN_GREATER_THAN_UV_MAX

PERL_SCAN_DISALLOW_PREFIX
PERL_SCAN_ALLOW_UNDERSCORES

UV grok_bin(char* start, STRLEN* len, I32* flags, NV *result)

UV grok_hex(char* start, STRLEN* len, I32* flags, NV *result)

int grok_number(const char *pv, STRLEN len, UV *valuep)

bool grok_numeric_radix(const char **sp, const char *send)

first invalid character. Unless is set in ,
encountering an invalid character will also trigger a warning. On return is set to the
length of the scanned string, and gives output flags.

If the value is <= UV_MAX it is returned as a UV, the output flags are clear, and
nothing is written to . If the value is > UV_MAX returns UV_MAX,
sets in the output flags, and writes the value to

(or the value is discarded if is NULL).

If is set in then the octal number may use
'_' characters to separate digits.

scan_bin

For backwards compatibility. Use instead.

scan_hex

For backwards compatibility. Use instead.

scan_oct

For backwards compatibility. Use instead.

cv_const_sv

If is a constant sub eligible for inlining. returns the constant value returned by the
sub. Otherwise, returns NULL.

Constant subs can be created with or as described in
.

newCONSTSUB

Creates a constant sub equivalent to Perl which is eligible for
inlining at compile-time.

newXS

Used by to hook up XSUBs as Perl subs.

pad_sv

Get the value at offset po in the current pad. Use macro PAD_SV instead of calling this
function directly.

Perl version 5.8.6 documentation - perlapi

Page 21http://perldoc.perl.org

PERL_SCAN_SILENT_ILLDIGIT

grok_oct
PERL_SCAN_GREATER_THAN_UV_MAX

PERL_SCAN_ALLOW_UNDERSCORES

grok_bin

grok_hex

grok_oct

cv

newCONSTSUB

sub FOO () { 123 }

xsubpp

*flags
*len

*flags

*result

*result result

*flags

"Constant
Functions" in perlsub

UV grok_oct(char* start, STRLEN* len, I32* flags, NV *result)

NV scan_bin(char* start, STRLEN len, STRLEN* retlen)

NV scan_hex(char* start, STRLEN len, STRLEN* retlen)

NV scan_oct(char* start, STRLEN len, STRLEN* retlen)

SV* cv_const_sv(CV* cv)

CV* newCONSTSUB(HV* stash, char* name, SV* sv)

SV* pad_sv(PADOFFSET po)

Optree Manipulation Functions

Pad Data Structures

dMARK

Declare a stack marker variable, , for the XSUB. See and .

dORIGMARK

Saves the original stack mark for the XSUB. See .

dSP

Declares a local copy of perl's stack pointer for the XSUB, available via the macro.
See .

EXTEND

Used to extend the argument stack for an XSUB's return values. Once used,
guarantees that there is room for at least to be pushed onto the stack.

MARK

Stack marker variable for the XSUB. See .

mPUSHi

Push an integer onto the stack. The stack must have room for this element. Handles
'set' magic. Does not use . See also , and .

mPUSHn

Push a double onto the stack. The stack must have room for this element. Handles
'set' magic. Does not use . See also , and .

mPUSHp

Push a string onto the stack. The stack must have room for this element. The
indicates the length of the string. Handles 'set' magic. Does not use . See also

, and .

mPUSHu

Push an unsigned integer onto the stack. The stack must have room for this element.
Handles 'set' magic. Does not use . See also , and .

mXPUSHi

Push an integer onto the stack, extending the stack if necessary. Handles 'set' magic.
Does not use . See also , and .

Perl version 5.8.6 documentation - perlapi

Page 22http://perldoc.perl.org

Stack Manipulation Macros

mark MARK dORIGMARK

ORIGMARK

SP
SP

nitems

dMARK

TARG PUSHi mXPUSHi XPUSHi

TARG PUSHn mXPUSHn XPUSHn

len
TARG

PUSHp mXPUSHp XPUSHp

TARG PUSHu mXPUSHu XPUSHu

TARG XPUSHi mPUSHi PUSHi

dMARK;

dORIGMARK;

dSP;

void EXTEND(SP, int nitems)

void mPUSHi(IV iv)

void mPUSHn(NV nv)

void mPUSHp(char* str, STRLEN len)

void mPUSHu(UV uv)

void mXPUSHi(IV iv)

mXPUSHn

Push a double onto the stack, extending the stack if necessary. Handles 'set' magic.
Does not use . See also , and .

mXPUSHp

Push a string onto the stack, extending the stack if necessary. The indicates the
length of the string. Handles 'set' magic. Does not use . See also ,

and .

mXPUSHu

Push an unsigned integer onto the stack, extending the stack if necessary. Handles
'set' magic. Does not use . See also , and .

ORIGMARK

The original stack mark for the XSUB. See .

POPi

Pops an integer off the stack.

POPl

Pops a long off the stack.

POPn

Pops a double off the stack.

POPp

Pops a string off the stack. Deprecated. New code should provide a STRLEN n_a and
use POPpx.

POPpbytex

Pops a string off the stack which must consist of bytes i.e. characters < 256. Requires
a variable STRLEN n_a in scope.

POPpx

Pops a string off the stack. Requires a variable STRLEN n_a in scope.

POPs

Pops an SV off the stack.

Perl version 5.8.6 documentation - perlapi

Page 23http://perldoc.perl.org

void mXPUSHn(NV nv)

void mXPUSHp(char* str, STRLEN len)

void mXPUSHu(UV uv)

IV POPi

long POPl

NV POPn

char* POPp

char* POPpbytex

char* POPpx

TARG XPUSHn mPUSHn PUSHn

len
TARG XPUSHp

mPUSHp PUSHp

TARG XPUSHu mPUSHu PUSHu

dORIGMARK

PUSHi

Push an integer onto the stack. The stack must have room for this element. Handles
'set' magic. Uses , so or should be called to declare it. Do not
call multiple -oriented macros to return lists from XSUB's - see instead.
See also and .

PUSHMARK

Opening bracket for arguments on a callback. See and .

PUSHmortal

Push a new mortal SV onto the stack. The stack must have room for this element.
Does not handle 'set' magic. Does not use . See also , and

.

PUSHn

Push a double onto the stack. The stack must have room for this element. Handles
'set' magic. Uses , so or should be called to declare it. Do not
call multiple -oriented macros to return lists from XSUB's - see instead.
See also and .

PUSHp

Push a string onto the stack. The stack must have room for this element. The
indicates the length of the string. Handles 'set' magic. Uses , so or

should be called to declare it. Do not call multiple -oriented macros to
return lists from XSUB's - see instead. See also and .

PUSHs

Push an SV onto the stack. The stack must have room for this element. Does not
handle 'set' magic. Does not use . See also , and

.

PUSHu

Push an unsigned integer onto the stack. The stack must have room for this element.
Handles 'set' magic. Uses , so or should be called to declare
it. Do not call multiple -oriented macros to return lists from XSUB's - see
instead. See also and .

PUTBACK

Closing bracket for XSUB arguments. This is usually handled by . See

Perl version 5.8.6 documentation - perlapi

Page 24http://perldoc.perl.org

SV* POPs

void PUSHi(IV iv)

void PUSHMARK(SP)

void PUSHmortal()

void PUSHn(NV nv)

void PUSHp(char* str, STRLEN len)

void PUSHs(SV* sv)

void PUSHu(UV uv)

TARG dTARGET dXSTARG
TARG mPUSHi

XPUSHi mXPUSHi

PUTBACK

TARG PUSHs XPUSHmortal
XPUSHs

TARG dTARGET dXSTARG
TARG mPUSHn

XPUSHn mXPUSHn

len
TARG dTARGET

dXSTARG TARG
mPUSHp XPUSHp mXPUSHp

TARG PUSHmortal XPUSHs
XPUSHmortal

TARG dTARGET dXSTARG
TARG mPUSHu

XPUSHu mXPUSHu

xsubpp

perlcall

and for other uses.

SP

Stack pointer. This is usually handled by . See and .

SPAGAIN

Refetch the stack pointer. Used after a callback. See .

XPUSHi

Push an integer onto the stack, extending the stack if necessary. Handles 'set' magic.
Uses , so or should be called to declare it. Do not call
multiple -oriented macros to return lists from XSUB's - see instead. See
also and .

XPUSHmortal

Push a new mortal SV onto the stack, extending the stack if necessary. Does not
handle 'set' magic. Does not use . See also , and .

XPUSHn

Push a double onto the stack, extending the stack if necessary. Handles 'set' magic.
Uses , so or should be called to declare it. Do not call
multiple -oriented macros to return lists from XSUB's - see instead. See
also and .

XPUSHp

Push a string onto the stack, extending the stack if necessary. The indicates the
length of the string. Handles 'set' magic. Uses , so or should
be called to declare it. Do not call multiple -oriented macros to return lists from
XSUB's - see instead. See also and .

XPUSHs

Push an SV onto the stack, extending the stack if necessary. Does not handle 'set'
magic. Does not use . See also , and .

XPUSHu

Push an unsigned integer onto the stack, extending the stack if necessary. Handles
'set' magic. Uses , so or should be called to declare it. Do not
call multiple -oriented macros to return lists from XSUB's - see instead.
See also and .

Perl version 5.8.6 documentation - perlapi

Page 25http://perldoc.perl.org

PUSHMARK

xsubpp dSP SPAGAIN

TARG dTARGET dXSTARG
TARG mXPUSHi

PUSHi mPUSHi

TARG XPUSHs PUSHmortal PUSHs

TARG dTARGET dXSTARG
TARG mXPUSHn

PUSHn mPUSHn

len
TARG dTARGET dXSTARG

TARG
mXPUSHp PUSHp mPUSHp

TARG XPUSHmortal PUSHs PUSHmortal

TARG dTARGET dXSTARG
TARG mXPUSHu

PUSHu mPUSHu

perlcall

perlcall

PUTBACK;

SPAGAIN;

void XPUSHi(IV iv)

void XPUSHmortal()

void XPUSHn(NV nv)

void XPUSHp(char* str, STRLEN len)

void XPUSHs(SV* sv)

void XPUSHu(UV uv)

XSRETURN

Return from XSUB, indicating number of items on the stack. This is usually handled by
.

XSRETURN_EMPTY

Return an empty list from an XSUB immediately.

XSRETURN_IV

Return an integer from an XSUB immediately. Uses .

XSRETURN_NO

Return from an XSUB immediately. Uses .

XSRETURN_NV

Return a double from an XSUB immediately. Uses .

XSRETURN_PV

Return a copy of a string from an XSUB immediately. Uses .

XSRETURN_UNDEF

Return from an XSUB immediately. Uses .

XSRETURN_UV

Return an integer from an XSUB immediately. Uses .

XSRETURN_YES

Return from an XSUB immediately. Uses .

XST_mIV

Place an integer into the specified position on the stack. The value is stored in a
new mortal SV.

XST_mNO

Place into the specified position on the stack.

Perl version 5.8.6 documentation - perlapi

Page 26http://perldoc.perl.org

xsubpp

XST_mIV

&PL_sv_no XST_mNO

XST_mNV

XST_mPV

&PL_sv_undef XST_mUNDEF

XST_mUV

&PL_sv_yes XST_mYES

pos

&PL_sv_no pos

void XSRETURN(int nitems)

XSRETURN_EMPTY;

void XSRETURN_IV(IV iv)

XSRETURN_NO;

void XSRETURN_NV(NV nv)

void XSRETURN_PV(char* str)

XSRETURN_UNDEF;

void XSRETURN_UV(IV uv)

XSRETURN_YES;

void XST_mIV(int pos, IV iv)

void XST_mNO(int pos)

XST_mNV

Place a double into the specified position on the stack. The value is stored in a
new mortal SV.

XST_mPV

Place a copy of a string into the specified position on the stack. The value is
stored in a new mortal SV.

XST_mUNDEF

Place into the specified position on the stack.

XST_mYES

Place into the specified position on the stack.

svtype

An enum of flags for Perl types. These are found in the file in the enum.
Test these flags with the macro.

SVt_IV

Integer type flag for scalars. See .

SVt_NV

Double type flag for scalars. See .

SVt_PV

Pointer type flag for scalars. See .

SVt_PVAV

Type flag for arrays. See .

SVt_PVCV

Type flag for code refs. See .

SVt_PVHV

Type flag for hashes. See .

SVt_PVMG

Type flag for blessed scalars. See .

get_sv

Returns the SV of the specified Perl scalar. If is set and the Perl variable does
not exist then it will be created. If is not set and the variable does not exist
then NULL is returned.

NOTE: the perl_ form of this function is deprecated.

Perl version 5.8.6 documentation - perlapi

Page 27http://perldoc.perl.org

void XST_mNV(int pos, NV nv)

void XST_mPV(int pos, char* str)

void XST_mUNDEF(int pos)

void XST_mYES(int pos)

pos

pos

&PL_sv_undef pos

&PL_sv_yes pos

svtype
SvTYPE

svtype

svtype

svtype

svtype

svtype

svtype

svtype

create
create

SV Flags

SV Manipulation Functions

sv.h

looks_like_number

Test if the content of an SV looks like a number (or is a number). and
are treated as numbers (so will not issue a non-numeric warning), even if your atof()
doesn't grok them.

newRV_inc

Creates an RV wrapper for an SV. The reference count for the original SV is
incremented.

newRV_noinc

Creates an RV wrapper for an SV. The reference count for the original SV is
incremented.

NEWSV

Creates a new SV. A non-zero parameter indicates the number of bytes of
preallocated string space the SV should have. An extra byte for a tailing NUL is also
reserved. (SvPOK is not set for the SV even if string space is allocated.) The reference
count for the new SV is set to 1. is an integer id between 0 and 1299 (used to
identify leaks).

newSV

Create a new null SV, or if len > 0, create a new empty SVt_PV type SV with an initial
PV allocation of len+1. Normally accessed via the macro.

newSViv

Creates a new SV and copies an integer into it. The reference count for the SV is set
to 1.

newSVnv

Creates a new SV and copies a floating point value into it. The reference count for the
SV is set to 1.

newSVpv

Creates a new SV and copies a string into it. The reference count for the SV is set to
1. If is zero, Perl will compute the length using strlen(). For efficiency, consider
using instead.

newSVpvf

Perl version 5.8.6 documentation - perlapi

Page 28http://perldoc.perl.org

SV* get_sv(const char* name, I32 create)

I32 looks_like_number(SV* sv)

SV* newRV_inc(SV* sv)

SV* newRV_noinc(SV *sv)

SV* NEWSV(int id, STRLEN len)

SV* newSV(STRLEN len)

SV* newSViv(IV i)

SV* newSVnv(NV n)

SV* newSVpv(const char* s, STRLEN len)

Inf Infinity

len

id

NEWSV

len
newSVpvn

not

Creates a new SV and initializes it with the string formatted like .

newSVpvn

Creates a new SV and copies a string into it. The reference count for the SV is set to
1. Note that if is zero, Perl will create a zero length string. You are responsible for
ensuring that the source string is at least bytes long. If the argument is NULL
the new SV will be undefined.

newSVpvn_share

Creates a new SV with its SvPVX pointing to a shared string in the string table. If the
string does not already exist in the table, it is created first. Turns on READONLY and
FAKE. The string's hash is stored in the UV slot of the SV; if the parameter is
non-zero, that value is used; otherwise the hash is computed. The idea here is that as
the string table is used for shared hash keys these strings will have SvPVX == HeKEY
and hash lookup will avoid string compare.

newSVrv

Creates a new SV for the RV, , to point to. If is not an RV then it will be upgraded
to one. If is non-null then the new SV will be blessed in the specified
package. The new SV is returned and its reference count is 1.

newSVsv

Creates a new SV which is an exact duplicate of the original SV. (Uses).

newSVuv

Creates a new SV and copies an unsigned integer into it. The reference count for the
SV is set to 1.

SvCUR

Returns the length of the string which is in the SV. See .

SvCUR_set

Set the length of the string which is in the SV. See .

SvEND

Returns a pointer to the last character in the string which is in the SV. See .
Access the character as *(SvEND(sv)).

Perl version 5.8.6 documentation - perlapi

Page 29http://perldoc.perl.org

sprintf

len
len s

hash

rv rv
classname

sv_setsv

SvLEN

SvCUR

SvCUR

SV* newSVpvf(const char* pat, ...)

SV* newSVpvn(const char* s, STRLEN len)

SV* newSVpvn_share(const char* s, I32 len, U32 hash)

SV* newSVrv(SV* rv, const char* classname)

SV* newSVsv(SV* old)

SV* newSVuv(UV u)

STRLEN SvCUR(SV* sv)

void SvCUR_set(SV* sv, STRLEN len)

char* SvEND(SV* sv)

SvGROW

Expands the character buffer in the SV so that it has room for the indicated number of
bytes (remember to reserve space for an extra trailing NUL character). Calls
to perform the expansion if necessary. Returns a pointer to the character buffer.

SvIOK

Returns a boolean indicating whether the SV contains an integer.

SvIOKp

Returns a boolean indicating whether the SV contains an integer. Checks the
setting. Use .

SvIOK_notUV

Returns a boolean indicating whether the SV contains a signed integer.

SvIOK_off

Unsets the IV status of an SV.

SvIOK_on

Tells an SV that it is an integer.

SvIOK_only

Tells an SV that it is an integer and disables all other OK bits.

SvIOK_only_UV

Tells and SV that it is an unsigned integer and disables all other OK bits.

SvIOK_UV

Returns a boolean indicating whether the SV contains an unsigned integer.

SvIsCOW

Returns a boolean indicating whether the SV is Copy-On-Write. (either shared hash
key scalars, or full Copy On Write scalars if 5.9.0 is configured for COW)

SvIsCOW_shared_hash

Returns a boolean indicating whether the SV is Copy-On-Write shared hash key

Perl version 5.8.6 documentation - perlapi

Page 30http://perldoc.perl.org

sv_grow

SvIOK

char * SvGROW(SV* sv, STRLEN len)

bool SvIOK(SV* sv)

bool SvIOKp(SV* sv)

bool SvIOK_notUV(SV* sv)

void SvIOK_off(SV* sv)

void SvIOK_on(SV* sv)

void SvIOK_only(SV* sv)

void SvIOK_only_UV(SV* sv)

bool SvIOK_UV(SV* sv)

bool SvIsCOW(SV* sv)

private

scalar.

SvIV

Coerces the given SV to an integer and returns it. See for a version which
guarantees to evaluate sv only once.

SvIVx

Coerces the given SV to an integer and returns it. Guarantees to evaluate sv only
once. Use the more efficient otherwise.

SvIVX

Returns the raw value in the SV's IV slot, without checks or conversions. Only use
when you are sure SvIOK is true. See also .

SvLEN

Returns the size of the string buffer in the SV, not including any part attributable to
. See .

SvNIOK

Returns a boolean indicating whether the SV contains a number, integer or double.

SvNIOKp

Returns a boolean indicating whether the SV contains a number, integer or double.
Checks the setting. Use .

SvNIOK_off

Unsets the NV/IV status of an SV.

SvNOK

Returns a boolean indicating whether the SV contains a double.

SvNOKp

Returns a boolean indicating whether the SV contains a double. Checks the
setting. Use .

SvNOK_off

Unsets the NV status of an SV.

Perl version 5.8.6 documentation - perlapi

Page 31http://perldoc.perl.org

bool SvIsCOW_shared_hash(SV* sv)

IV SvIV(SV* sv)

IV SvIVx(SV* sv)

IV SvIVX(SV* sv)

STRLEN SvLEN(SV* sv)

bool SvNIOK(SV* sv)

bool SvNIOKp(SV* sv)

void SvNIOK_off(SV* sv)

bool SvNOK(SV* sv)

bool SvNOKp(SV* sv)

SvIVx

SvIV

SvIV()

SvOOK SvCUR

SvNIOK

SvNOK

private

private

SvNOK_on

Tells an SV that it is a double.

SvNOK_only

Tells an SV that it is a double and disables all other OK bits.

SvNV

Coerce the given SV to a double and return it. See for a version which
guarantees to evaluate sv only once.

SvNVx

Coerces the given SV to a double and returns it. Guarantees to evaluate sv only once.
Use the more efficient otherwise.

SvNVX

Returns the raw value in the SV's NV slot, without checks or conversions. Only use
when you are sure SvNOK is true. See also .

SvOK

Returns a boolean indicating whether the value is an SV. It also tells whether the value
is defined or not.

SvOOK

Returns a boolean indicating whether the SvIVX is a valid offset value for the SvPVX.
This hack is used internally to speed up removal of characters from the beginning of a
SvPV. When SvOOK is true, then the start of the allocated string buffer is really
(SvPVX - SvIVX).

SvPOK

Returns a boolean indicating whether the SV contains a character string.

SvPOKp

Returns a boolean indicating whether the SV contains a character string. Checks the
setting. Use .

SvPOK_off

Perl version 5.8.6 documentation - perlapi

Page 32http://perldoc.perl.org

void SvNOK_off(SV* sv)

void SvNOK_on(SV* sv)

void SvNOK_only(SV* sv)

NV SvNV(SV* sv)

NV SvNVx(SV* sv)

NV SvNVX(SV* sv)

bool SvOK(SV* sv)

bool SvOOK(SV* sv)

bool SvPOK(SV* sv)

bool SvPOKp(SV* sv)

SvNVx

SvNV

SvNV()

SvPOKprivate

Unsets the PV status of an SV.

SvPOK_on

Tells an SV that it is a string.

SvPOK_only

Tells an SV that it is a string and disables all other OK bits. Will also turn off the UTF-8
status.

SvPOK_only_UTF8

Tells an SV that it is a string and disables all other OK bits, and leaves the UTF-8
status as it was.

SvPV

Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does
not contain a string. The SV may cache the stringified version becoming .
Handles 'get' magic. See also for a version which guarantees to evaluate sv
only once.

SvPVbyte

Like , but converts sv to byte representation first if necessary.

SvPVbytex

Like , but converts sv to byte representation first if necessary. Guarantees to
evaluate sv only once; use the more efficient otherwise.

SvPVbytex_force

Like , but converts sv to byte representation first if necessary.
Guarantees to evaluate sv only once; use the more efficient
otherwise.

SvPVbyte_force

Like , but converts sv to byte representation first if necessary.

SvPVbyte_nolen

Like , but converts sv to byte representation first if necessary.

Perl version 5.8.6 documentation - perlapi

Page 33http://perldoc.perl.org

void SvPOK_off(SV* sv)

void SvPOK_on(SV* sv)

void SvPOK_only(SV* sv)

void SvPOK_only_UTF8(SV* sv)

char* SvPV(SV* sv, STRLEN len)

char* SvPVbyte(SV* sv, STRLEN len)

char* SvPVbytex(SV* sv, STRLEN len)

char* SvPVbytex_force(SV* sv, STRLEN len)

char* SvPVbyte_force(SV* sv, STRLEN len)

char* SvPVbyte_nolen(SV* sv)

SvPOK
SvPVx

SvPV

SvPV
SvPVbyte

SvPV_force
SvPVbyte_force

SvPV_force

SvPV_nolen

SvPVutf8

Like , but converts sv to utf8 first if necessary.

SvPVutf8x

Like , but converts sv to utf8 first if necessary. Guarantees to evaluate sv only
once; use the more efficient otherwise.

SvPVutf8x_force

Like , but converts sv to utf8 first if necessary. Guarantees to evaluate sv
only once; use the more efficient otherwise.

SvPVutf8_force

Like , but converts sv to utf8 first if necessary.

SvPVutf8_nolen

Like , but converts sv to utf8 first if necessary.

SvPVx

A version of which guarantees to evaluate sv only once.

SvPVX

Returns a pointer to the physical string in the SV. The SV must contain a string.

SvPV_force

Like but will force the SV into containing just a string (). You want
force if you are going to update the directly.

SvPV_force_nomg

Like but will force the SV into containing just a string (). You want
force if you are going to update the directly. Doesn't process magic.

SvPV_nolen

Returns a pointer to the string in the SV, or a stringified form of the SV if the SV does
not contain a string. The SV may cache the stringified form becoming . Handles
'get' magic.

Perl version 5.8.6 documentation - perlapi

Page 34http://perldoc.perl.org

char* SvPVutf8(SV* sv, STRLEN len)

char* SvPVutf8x(SV* sv, STRLEN len)

char* SvPVutf8x_force(SV* sv, STRLEN len)

char* SvPVutf8_force(SV* sv, STRLEN len)

char* SvPVutf8_nolen(SV* sv)

char* SvPVx(SV* sv, STRLEN len)

char* SvPVX(SV* sv)

char* SvPV_force(SV* sv, STRLEN len)

char* SvPV_force_nomg(SV* sv, STRLEN len)

char* SvPV_nolen(SV* sv)

SvPV

SvPV
SvPVutf8

SvPV_force
SvPVutf8_force

SvPV_force

SvPV_nolen

SvPV

SvPV SvPOK_only
SvPVX

SvPV SvPOK_only
SvPVX

SvPOK

SvREFCNT

Returns the value of the object's reference count.

SvREFCNT_dec

Decrements the reference count of the given SV.

SvREFCNT_inc

Increments the reference count of the given SV.

SvROK

Tests if the SV is an RV.

SvROK_off

Unsets the RV status of an SV.

SvROK_on

Tells an SV that it is an RV.

SvRV

Dereferences an RV to return the SV.

SvSTASH

Returns the stash of the SV.

SvTAINT

Taints an SV if tainting is enabled.

SvTAINTED

Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not.

SvTAINTED_off

Untaints an SV. Be careful with this routine, as it short-circuits some of Perl's
fundamental security features. XS module authors should not use this function unless
they fully understand all the implications of unconditionally untainting the value.
Untainting should be done in the standard perl fashion, via a carefully crafted regexp,
rather than directly untainting variables.

Perl version 5.8.6 documentation - perlapi

Page 35http://perldoc.perl.org

U32 SvREFCNT(SV* sv)

void SvREFCNT_dec(SV* sv)

SV* SvREFCNT_inc(SV* sv)

bool SvROK(SV* sv)

void SvROK_off(SV* sv)

void SvROK_on(SV* sv)

SV* SvRV(SV* sv)

HV* SvSTASH(SV* sv)

void SvTAINT(SV* sv)

bool SvTAINTED(SV* sv)

very

SvTAINTED_on

Marks an SV as tainted if tainting is enabled.

SvTRUE

Returns a boolean indicating whether Perl would evaluate the SV as true or false,
defined or undefined. Does not handle 'get' magic.

SvTYPE

Returns the type of the SV. See .

SvUOK

Returns a boolean indicating whether the SV contains an unsigned integer.

SvUPGRADE

Used to upgrade an SV to a more complex form. Uses to perform the
upgrade if necessary. See .

SvUTF8

Returns a boolean indicating whether the SV contains UTF-8 encoded data.

SvUTF8_off

Unsets the UTF-8 status of an SV.

SvUTF8_on

Turn on the UTF-8 status of an SV (the data is not changed, just the flag). Do not use
frivolously.

SvUV

Coerces the given SV to an unsigned integer and returns it. See for a version
which guarantees to evaluate sv only once.

SvUVx

Coerces the given SV to an unsigned integer and returns it. Guarantees to evaluate sv
only once. Use the more efficient otherwise.

Perl version 5.8.6 documentation - perlapi

Page 36http://perldoc.perl.org

void SvTAINTED_off(SV* sv)

void SvTAINTED_on(SV* sv)

bool SvTRUE(SV* sv)

svtype SvTYPE(SV* sv)

void SvUOK(SV* sv)

void SvUPGRADE(SV* sv, svtype type)

bool SvUTF8(SV* sv)

void SvUTF8_off(SV *sv)

void SvUTF8_on(SV *sv)

UV SvUV(SV* sv)

UV SvUVx(SV* sv)

svtype

sv_upgrade
svtype

SvUVx

SvUV

SvUVX

Returns the raw value in the SV's UV slot, without checks or conversions. Only use
when you are sure SvIOK is true. See also .

sv_2bool

This function is only called on magical items, and is only used by sv_true() or its macro
equivalent.

sv_2cv

Using various gambits, try to get a CV from an SV; in addition, try if possible to set
and to the stash and GV associated with it.

sv_2io

Using various gambits, try to get an IO from an SV: the IO slot if its a GV; or the
recursive result if we're an RV; or the IO slot of the symbol named after the PV if we're
a string.

sv_2iv

Return the integer value of an SV, doing any necessary string conversion, magic etc.
Normally used via the and macros.

sv_2mortal

Marks an existing SV as mortal. The SV will be destroyed "soon", either by an explicit
call to FREETMPS, or by an implicit call at places such as statement boundaries.
SvTEMP() is turned on which means that the SV's string buffer can be "stolen" if this
SV is copied. See also and .

sv_2nv

Return the num value of an SV, doing any necessary string or integer conversion,
magic etc. Normally used via the and macros.

sv_2pvbyte

Return a pointer to the byte-encoded representation of the SV, and set *lp to its length.
May cause the SV to be downgraded from UTF-8 as a side-effect.

Usually accessed via the macro.

sv_2pvbyte_nolen

Return a pointer to the byte-encoded representation of the SV. May cause the SV to
be downgraded from UTF-8 as a side-effect.

Perl version 5.8.6 documentation - perlapi

Page 37http://perldoc.perl.org

UV SvUVX(SV* sv)

bool sv_2bool(SV* sv)

CV* sv_2cv(SV* sv, HV** st, GV** gvp, I32 lref)

IO* sv_2io(SV* sv)

IV sv_2iv(SV* sv)

SV* sv_2mortal(SV* sv)

NV sv_2nv(SV* sv)

char* sv_2pvbyte(SV* sv, STRLEN* lp)

SvUV()

*st
*gvp

SvIV(sv) SvIVx(sv)

sv_newmortal sv_mortalcopy

SvNV(sv) SvNVx(sv)

SvPVbyte

Usually accessed via the macro.

sv_2pvutf8

Return a pointer to the UTF-8-encoded representation of the SV, and set *lp to its
length. May cause the SV to be upgraded to UTF-8 as a side-effect.

Usually accessed via the macro.

sv_2pvutf8_nolen

Return a pointer to the UTF-8-encoded representation of the SV. May cause the SV to
be upgraded to UTF-8 as a side-effect.

Usually accessed via the macro.

sv_2pv_flags

Returns a pointer to the string value of an SV, and sets *lp to its length. If flags
includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string if necessary.
Normally invoked via the macro. and usually
end up here too.

sv_2pv_nolen

Like , but doesn't return the length too. You should usually use the macro
wrapper instead. char* sv_2pv_nolen(SV* sv)

sv_2uv

Return the unsigned integer value of an SV, doing any necessary string conversion,
magic etc. Normally used via the and macros.

sv_backoff

Remove any string offset. You should normally use the macro wrapper
instead.

sv_bless

Blesses an SV into a specified package. The SV must be an RV. The package must
be designated by its stash (see). The reference count of the SV is
unaffected.

sv_catpv

Concatenates the string onto the end of the string which is in the SV. If the SV has the
UTF-8 status set, then the bytes appended should be valid UTF-8. Handles 'get'
magic, but not 'set' magic. See .

Perl version 5.8.6 documentation - perlapi

Page 38http://perldoc.perl.org

SvPVbyte_nolen

SvPVutf8

SvPVutf8_nolen

SvPV_flags sv_2pv() sv_2pv_nomg

sv_2pv()
SvPV_nolen(sv)

SvUV(sv) SvUVx(sv)

SvOOK_off

gv_stashpv()

sv_catpv_mg

char* sv_2pvbyte_nolen(SV* sv)

char* sv_2pvutf8(SV* sv, STRLEN* lp)

char* sv_2pvutf8_nolen(SV* sv)

char* sv_2pv_flags(SV* sv, STRLEN* lp, I32 flags)

UV sv_2uv(SV* sv)

int sv_backoff(SV* sv)

SV* sv_bless(SV* sv, HV* stash)

void sv_catpv(SV* sv, const char* ptr)

sv_catpvf

Processes its arguments like and appends the formatted output to an SV. If
the appended data contains "wide" characters (including, but not limited to, SVs with a
UTF-8 PV formatted with %s, and characters >255 formatted with %c), the original SV
might get upgraded to UTF-8. Handles 'get' magic, but not 'set' magic. See

.

sv_catpvf_mg

Like , but also handles 'set' magic.

sv_catpvn

Concatenates the string onto the end of the string which is in the SV. The
indicates number of bytes to copy. If the SV has the UTF-8 status set, then the bytes
appended should be valid UTF-8. Handles 'get' magic, but not 'set' magic. See

.

sv_catpvn_flags

Concatenates the string onto the end of the string which is in the SV. The
indicates number of bytes to copy. If the SV has the UTF-8 status set, then the bytes
appended should be valid UTF-8. If has bit set, will on

if appropriate, else not. and are implemented in
terms of this function.

sv_catpvn_mg

Like , but also handles 'set' magic.

sv_catpvn_nomg

Like but doesn't process magic.

sv_catpv_mg

Like , but also handles 'set' magic.

sv_catsv

Concatenates the string from SV onto the end of the string in SV . Modifies
but not . Handles 'get' magic, but not 'set' magic. See .

sv_catsv_flags

Concatenates the string from SV onto the end of the string in SV . Modifies
but not . If has bit set, will on the SVs if

Perl version 5.8.6 documentation - perlapi

Page 39http://perldoc.perl.org

sprintf

sv_catpvf_mg

sv_catpvf

len

sv_catpvn_mg

len

flags SV_GMAGIC mg_get
dsv sv_catpvn sv_catpvn_nomg

sv_catpvn

sv_catpvn

sv_catpv

ssv dsv
dsv ssv sv_catsv_mg

ssv dsv
dsv ssv flags SV_GMAGIC mg_get

void sv_catpvf(SV* sv, const char* pat, ...)

void sv_catpvf_mg(SV *sv, const char* pat, ...)

void sv_catpvn(SV* sv, const char* ptr, STRLEN len)

void sv_catpvn_flags(SV* sv, const char* ptr, STRLEN len, I32
flags)

void sv_catpvn_mg(SV *sv, const char *ptr, STRLEN len)

void sv_catpvn_nomg(SV* sv, const char* ptr, STRLEN len)

void sv_catpv_mg(SV *sv, const char *ptr)

void sv_catsv(SV* dsv, SV* ssv)

appropriate, else not. and are implemented in terms of
this function.

sv_catsv_mg

Like , but also handles 'set' magic.

sv_catsv_nomg

Like but doesn't process magic.

sv_chop

Efficient removal of characters from the beginning of the string buffer. SvPOK(sv) must
be true and the must be a pointer to somewhere inside the string buffer. The
becomes the first character of the adjusted string. Uses the "OOK hack". Beware: after
this function returns, and SvPVX(sv) may no longer refer to the same chunk of
data.

sv_clear

Clear an SV: call any destructors, free up any memory used by the body, and free the
body itself. The SV's head is freed, although its type is set to all 1's so that it won't
inadvertently be assumed to be live during global destruction etc. This function should
only be called when REFCNT is zero. Most of the time you'll want to call
(or its macro wrapper) instead.

sv_cmp

Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the string in
is less than, equal to, or greater than the string in . Is UTF-8 and 'use bytes'

aware, handles get magic, and will coerce its args to strings if necessary. See also
.

sv_cmp_locale

Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and 'use bytes'
aware, handles get magic, and will coerce its args to strings if necessary. See also

. See also .

sv_collxfrm

Add Collate Transform magic to an SV if it doesn't already have it.

Any scalar variable may carry PERL_MAGIC_collxfrm magic that contains the scalar
data of the variable, but transformed to such a format that a normal memory
comparison can be used to compare the data according to the locale settings.

Perl version 5.8.6 documentation - perlapi

Page 40http://perldoc.perl.org

sv_catsv sv_catsv_nomg

sv_catsv

sv_catsv

ptr ptr

ptr

sv_free()
SvREFCNT_dec

sv1 sv2

sv_cmp_locale

sv_cmp_locale sv_cmp

void sv_catsv_flags(SV* dsv, SV* ssv, I32 flags)

void sv_catsv_mg(SV *dstr, SV *sstr)

void sv_catsv_nomg(SV* dsv, SV* ssv)

void sv_chop(SV* sv, char* ptr)

void sv_clear(SV* sv)

I32 sv_cmp(SV* sv1, SV* sv2)

I32 sv_cmp_locale(SV* sv1, SV* sv2)

char* sv_collxfrm(SV* sv, STRLEN* nxp)

not

sv_copypv

Copies a stringified representation of the source SV into the destination SV.
Automatically performs any necessary mg_get and coercion of numeric values into
strings. Guaranteed to preserve UTF-8 flag even from overloaded objects. Similar in
nature to sv_2pv[_flags] but operates directly on an SV instead of just the string.
Mostly uses sv_2pv_flags to do its work, except when that would lose the UTF-8'ness
of the PV.

sv_dec

Auto-decrement of the value in the SV, doing string to numeric conversion if
necessary. Handles 'get' magic.

sv_derived_from

Returns a boolean indicating whether the SV is derived from the specified class. This
is the function that implements . It works for class names as well as
for objects.

sv_eq

Returns a boolean indicating whether the strings in the two SVs are identical. Is UTF-8
and 'use bytes' aware, handles get magic, and will coerce its args to strings if
necessary.

sv_force_normal

Undo various types of fakery on an SV: if the PV is a shared string, make a private
copy; if we're a ref, stop refing; if we're a glob, downgrade to an xpvmg. See also

.

sv_force_normal_flags

Undo various types of fakery on an SV: if the PV is a shared string, make a private
copy; if we're a ref, stop refing; if we're a glob, downgrade to an xpvmg. The
parameter gets passed to when unrefing.
calls this function with flags set to 0.

sv_free

Decrement an SV's reference count, and if it drops to zero, call to invoke
destructors and free up any memory used by the body; finally, deallocate the SV's
head itself. Normally called via a wrapper macro .

sv_gets

Get a line from the filehandle and store it into the SV, optionally appending to the
currently-stored string.

Perl version 5.8.6 documentation - perlapi

Page 41http://perldoc.perl.org

void sv_copypv(SV* dsv, SV* ssv)

void sv_dec(SV* sv)

bool sv_derived_from(SV* sv, const char* name)

I32 sv_eq(SV* sv1, SV* sv2)

void sv_force_normal(SV *sv)

void sv_force_normal_flags(SV *sv, U32 flags)

void sv_free(SV* sv)

UNIVERSAL::isa

sv_force_normal_flags

flags
sv_unref_flags() sv_force_normal

sv_clear

SvREFCNT_dec

sv_grow

Expands the character buffer in the SV. If necessary, uses and upgrades
the SV to . Returns a pointer to the character buffer. Use the wrapper
instead.

sv_inc

Auto-increment of the value in the SV, doing string to numeric conversion if necessary.
Handles 'get' magic.

sv_insert

Inserts a string at the specified offset/length within the SV. Similar to the Perl substr()
function.

sv_isa

Returns a boolean indicating whether the SV is blessed into the specified class. This
does not check for subtypes; use to verify an inheritance
relationship.

sv_isobject

Returns a boolean indicating whether the SV is an RV pointing to a blessed object. If
the SV is not an RV, or if the object is not blessed, then this will return false.

sv_iv

A private implementation of the macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

sv_len

Returns the length of the string in the SV. Handles magic and type coercion. See also
, which gives raw access to the xpv_cur slot.

sv_len_utf8

Returns the number of characters in the string in an SV, counting wide UTF-8 bytes as
a single character. Handles magic and type coercion.

sv_magic

Adds magic to an SV. First upgrades to type if necessary, then adds a

Perl version 5.8.6 documentation - perlapi

Page 42http://perldoc.perl.org

char* sv_gets(SV* sv, PerlIO* fp, I32 append)

char* sv_grow(SV* sv, STRLEN newlen)

void sv_inc(SV* sv)

void sv_insert(SV* bigsv, STRLEN offset, STRLEN len, char*
little, STRLEN littlelen)

int sv_isa(SV* sv, const char* name)

int sv_isobject(SV* sv)

IV sv_iv(SV* sv)

STRLEN sv_len(SV* sv)

STRLEN sv_len_utf8(SV* sv)

sv_unref
SVt_PV SvGROW

sv_derived_from

SvIVx

SvCUR

sv SVt_PVMG

new magic item of type to the head of the magic list.

See (which now calls) for a description of the handling of
the and arguments.

sv_magicext

Adds magic to an SV, upgrading it if necessary. Applies the supplied vtable and
returns a pointer to the magic added.

Note that will allow things that will not. In particular, you can
add magic to SvREADONLY SVs, and add more than one instance of the same 'how'.

If is greater than zero then a of is stored, if is
zero then is stored as-is and - as another special case - if

then is assumed to contain an and is stored as-is with its
REFCNT incremented.

(This is now used as a subroutine by .)

sv_mortalcopy

Creates a new SV which is a copy of the original SV (using). The new SV is
marked as mortal. It will be destroyed "soon", either by an explicit call to FREETMPS,
or by an implicit call at places such as statement boundaries. See also

and .

sv_newmortal

Creates a new null SV which is mortal. The reference count of the SV is set to 1. It will
be destroyed "soon", either by an explicit call to FREETMPS, or by an implicit call at
places such as statement boundaries. See also and .

sv_newref

Increment an SV's reference count. Use the wrapper instead.

sv_nv

A private implementation of the macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

sv_pos_b2u

Converts the value pointed to by offsetp from a count of bytes from the start of the
string, to a count of the equivalent number of UTF-8 chars. Handles magic and type
coercion.

sv_pos_u2b

Perl version 5.8.6 documentation - perlapi

Page 43http://perldoc.perl.org

how

sv_magicext sv_magic
name namlen

sv_magicext sv_magic

namlen savepvn name namlen
name (name && namlen

== HEf_SVKEY) name SV*

sv_magic

sv_setsv

sv_newmortal sv_2mortal

sv_mortalcopy sv_2mortal

SvREFCNT_inc()

SvNVx

void sv_magic(SV* sv, SV* obj, int how, const char* name, I32
namlen)

MAGIC * sv_magicext(SV* sv, SV* obj, int how, MGVTBL *vtbl,
const char* name, I32 namlen)

SV* sv_mortalcopy(SV* oldsv)

SV* sv_newmortal()

SV* sv_newref(SV* sv)

NV sv_nv(SV* sv)

void sv_pos_b2u(SV* sv, I32* offsetp)

copy

Converts the value pointed to by offsetp from a count of UTF-8 chars from the start of
the string, to a count of the equivalent number of bytes; if lenp is non-zero, it does the
same to lenp, but this time starting from the offset, rather than from the start of the
string. Handles magic and type coercion.

sv_pv

Use the macro instead

sv_pvbyte

Use instead.

sv_pvbyten

A private implementation of the macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

sv_pvbyten_force

A private implementation of the macro for compilers which can't
cope with complex macro expressions. Always use the macro instead.

sv_pvn

A private implementation of the macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

sv_pvn_force

Get a sensible string out of the SV somehow. A private implementation of the
macro for compilers which can't cope with complex macro expressions.

Always use the macro instead.

sv_pvn_force_flags

Get a sensible string out of the SV somehow. If has bit set, will
on if appropriate, else not. and

are implemented in terms of this function. You normally want to use the various
wrapper macros instead: see and

sv_pvutf8

Use the macro instead

sv_pvutf8n

Perl version 5.8.6 documentation - perlapi

Page 44http://perldoc.perl.org

void sv_pos_u2b(SV* sv, I32* offsetp, I32* lenp)

char* sv_pv(SV *sv)

char* sv_pvbyte(SV *sv)

char* sv_pvbyten(SV *sv, STRLEN *len)

char* sv_pvbyten_force(SV* sv, STRLEN* lp)

char* sv_pvn(SV *sv, STRLEN *len)

char* sv_pvn_force(SV* sv, STRLEN* lp)

char* sv_pvn_force_flags(SV* sv, STRLEN* lp, I32 flags)

char* sv_pvutf8(SV *sv)

SvPV_nolen

SvPVbyte_nolen

SvPVbyte

SvPVbytex_force

SvPV

SvPV_force

flags SV_GMAGIC
mg_get sv sv_pvn_force sv_pvn_force_nomg

SvPV_force SvPV_force_nomg

SvPVutf8_nolen

A private implementation of the macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

sv_pvutf8n_force

A private implementation of the macro for compilers which can't
cope with complex macro expressions. Always use the macro instead.

sv_reftype

Returns a string describing what the SV is a reference to.

sv_replace

Make the first argument a copy of the second, then delete the original. The target SV
physically takes over ownership of the body of the source SV and inherits its flags;
however, the target keeps any magic it owns, and any magic in the source is
discarded. Note that this is a rather specialist SV copying operation; most of the time
you'll want to use or one of its many macro front-ends.

sv_report_used

Dump the contents of all SVs not yet freed. (Debugging aid).

sv_reset

Underlying implementation for the Perl function. Note that the perl-level
function is vaguely deprecated.

sv_rvweaken

Weaken a reference: set the flag on this RV; give the referred-to SV
magic if it hasn't already; and push a back-reference to this

RV onto the array of backreferences associated with that magic.

sv_setiv

Copies an integer into the given SV, upgrading first if necessary. Does not handle 'set'
magic. See also .

sv_setiv_mg

Like , but also handles 'set' magic.

sv_setnv

Copies a double into the given SV, upgrading first if necessary. Does not handle 'set'

Perl version 5.8.6 documentation - perlapi

Page 45http://perldoc.perl.org

SvPVutf8

SvPVutf8_force

sv_setsv

reset

SvWEAKREF
PERL_MAGIC_backref

sv_setiv_mg

sv_setiv

char* sv_pvutf8n(SV *sv, STRLEN *len)

char* sv_pvutf8n_force(SV* sv, STRLEN* lp)

char* sv_reftype(SV* sv, int ob)

void sv_replace(SV* sv, SV* nsv)

void sv_report_used()

void sv_reset(char* s, HV* stash)

SV* sv_rvweaken(SV *sv)

void sv_setiv(SV* sv, IV num)

void sv_setiv_mg(SV *sv, IV i)

magic. See also .

sv_setnv_mg

Like , but also handles 'set' magic.

sv_setpv

Copies a string into an SV. The string must be null-terminated. Does not handle 'set'
magic. See .

sv_setpvf

Works like but copies the text into the SV instead of appending it. Does
not handle 'set' magic. See .

sv_setpvf_mg

Like , but also handles 'set' magic.

sv_setpviv

Copies an integer into the given SV, also updating its string value. Does not handle
'set' magic. See .

sv_setpviv_mg

Like , but also handles 'set' magic.

sv_setpvn

Copies a string into an SV. The parameter indicates the number of bytes to be
copied. If the argument is NULL the SV will become undefined. Does not handle
'set' magic. See .

sv_setpvn_mg

Like , but also handles 'set' magic.

sv_setpv_mg

Like , but also handles 'set' magic.

sv_setref_iv

Copies an integer into a new SV, optionally blessing the SV. The argument will be

Perl version 5.8.6 documentation - perlapi

Page 46http://perldoc.perl.org

sv_setnv_mg

sv_setnv

sv_setpv_mg

sv_catpvf
sv_setpvf_mg

sv_setpvf

sv_setpviv_mg

sv_setpviv

len
ptr

sv_setpvn_mg

sv_setpvn

sv_setpv

rv

void sv_setnv(SV* sv, NV num)

void sv_setnv_mg(SV *sv, NV num)

void sv_setpv(SV* sv, const char* ptr)

void sv_setpvf(SV* sv, const char* pat, ...)

void sv_setpvf_mg(SV *sv, const char* pat, ...)

void sv_setpviv(SV* sv, IV num)

void sv_setpviv_mg(SV *sv, IV iv)

void sv_setpvn(SV* sv, const char* ptr, STRLEN len)

void sv_setpvn_mg(SV *sv, const char *ptr, STRLEN len)

void sv_setpv_mg(SV *sv, const char *ptr)

upgraded to an RV. That RV will be modified to point to the new SV. The
argument indicates the package for the blessing. Set to to avoid
the blessing. The new SV will have a reference count of 1, and the RV will be returned.

sv_setref_nv

Copies a double into a new SV, optionally blessing the SV. The argument will be
upgraded to an RV. That RV will be modified to point to the new SV. The
argument indicates the package for the blessing. Set to to avoid
the blessing. The new SV will have a reference count of 1, and the RV will be returned.

sv_setref_pv

Copies a pointer into a new SV, optionally blessing the SV. The argument will be
upgraded to an RV. That RV will be modified to point to the new SV. If the
argument is NULL then will be placed into the SV. The
argument indicates the package for the blessing. Set to to avoid
the blessing. The new SV will have a reference count of 1, and the RV will be returned.

Do not use with other Perl types such as HV, AV, SV, CV, because those objects will
become corrupted by the pointer copy process.

Note that copies the string while this copies the pointer.

sv_setref_pvn

Copies a string into a new SV, optionally blessing the SV. The length of the string must
be specified with . The argument will be upgraded to an RV. That RV will be
modified to point to the new SV. The argument indicates the package for
the blessing. Set to to avoid the blessing. The new SV will have a
reference count of 1, and the RV will be returned.

Note that copies the pointer while this copies the string.

sv_setref_uv

Copies an unsigned integer into a new SV, optionally blessing the SV. The
argument will be upgraded to an RV. That RV will be modified to point to the new SV.
The argument indicates the package for the blessing. Set to

to avoid the blessing. The new SV will have a reference count of 1, and the
RV will be returned.

sv_setsv

Copies the contents of the source SV into the destination SV . The source SV
may be destroyed if it is mortal, so don't use this function if the source SV needs to be
reused. Does not handle 'set' magic. Loosely speaking, it performs a copy-by-value,
obliterating any previous content of the destination.

You probably want to use one of the assortment of wrappers, such as ,
, and .

Perl version 5.8.6 documentation - perlapi

Page 47http://perldoc.perl.org

classname
classname Nullch

rv
classname

classname Nullch

rv
pv

PL_sv_undef classname
classname Nullch

sv_setref_pvn

n rv
classname

classname Nullch

sv_setref_pv

rv

classname classname
Nullch

ssv dsv

SvSetSV
SvSetSV_nosteal SvSetMagicSV SvSetMagicSV_nosteal

SV* sv_setref_iv(SV* rv, const char* classname, IV iv)

SV* sv_setref_nv(SV* rv, const char* classname, NV nv)

SV* sv_setref_pv(SV* rv, const char* classname, void* pv)

SV* sv_setref_pvn(SV* rv, const char* classname, char* pv,
STRLEN n)

SV* sv_setref_uv(SV* rv, const char* classname, UV uv)

void sv_setsv(SV* dsv, SV* ssv)

sv_setsv_flags

Copies the contents of the source SV into the destination SV . The source SV
may be destroyed if it is mortal, so don't use this function if the source SV needs to be
reused. Does not handle 'set' magic. Loosely speaking, it performs a copy-by-value,
obliterating any previous content of the destination. If the parameter has the

bit set, will on if appropriate, else not. If the
parameter has the bit set then the buffers of temps will not be stolen.
<sv_setsv> and are implemented in terms of this function.

You probably want to use one of the assortment of wrappers, such as ,
, and .

This is the primary function for copying scalars, and most other copy-ish functions and
macros use this underneath.

sv_setsv_mg

Like , but also handles 'set' magic.

sv_setsv_nomg

Like but doesn't process magic.

sv_setuv

Copies an unsigned integer into the given SV, upgrading first if necessary. Does not
handle 'set' magic. See also .

sv_setuv_mg

Like , but also handles 'set' magic.

sv_taint

Taint an SV. Use instead. void sv_taint(SV* sv)

sv_tainted

Test an SV for taintedness. Use instead. bool sv_tainted(SV* sv)

sv_true

Returns true if the SV has a true value by Perl's rules. Use the macro instead,
which may call or may instead use an in-line version.

sv_unmagic

Removes all magic of type from an SV.

sv_unref

Unsets the RV status of the SV, and decrements the reference count of whatever was

Perl version 5.8.6 documentation - perlapi

Page 48http://perldoc.perl.org

void sv_setsv_flags(SV* dsv, SV* ssv, I32 flags)

void sv_setsv_mg(SV *dstr, SV *sstr)

void sv_setsv_nomg(SV* dsv, SV* ssv)

void sv_setuv(SV* sv, UV num)

void sv_setuv_mg(SV *sv, UV u)

I32 sv_true(SV *sv)

int sv_unmagic(SV* sv, int type)

ssv dsv

flags
SV_GMAGIC mg_get ssv flags

NOSTEAL
sv_setsv_nomg

SvSetSV
SvSetSV_nosteal SvSetMagicSV SvSetMagicSV_nosteal

sv_setsv

sv_setsv

sv_setuv_mg

sv_setuv

SvTAINTED_on

SvTAINTED

SvTRUE
sv_true()

type

being referenced by the RV. This can almost be thought of as a reversal of .
This is with the being zero. See .

sv_unref_flags

Unsets the RV status of the SV, and decrements the reference count of whatever was
being referenced by the RV. This can almost be thought of as a reversal of .
The argument can contain to force the reference
count to be decremented (otherwise the decrementing is conditional on the reference
count being different from one or the reference being a readonly SV). See
.

sv_untaint

Untaint an SV. Use instead. void sv_untaint(SV* sv)

sv_upgrade

Upgrade an SV to a more complex form. Generally adds a new body type to the SV,
then copies across as much information as possible from the old body. You generally
want to use the macro wrapper. See also .

sv_usepvn

Tells an SV to use to find its string value. Normally the string is stored inside the
SV but sv_usepvn allows the SV to use an outside string. The should point to
memory that was allocated by . The string length, , must be supplied. This
function will realloc the memory pointed to by , so that pointer should not be freed
or used by the programmer after giving it to sv_usepvn. Does not handle 'set' magic.
See .

sv_usepvn_mg

Like , but also handles 'set' magic.

sv_utf8_decode

If the PV of the SV is an octet sequence in UTF-8 and contains a multiple-byte
character, the flag is turned on so that it looks like a character. If the PV
contains only single-byte characters, the flag stays being off. Scans PV for
validity and returns false if the PV is invalid UTF-8.

NOTE: this function is experimental and may change or be removed without notice.

sv_utf8_downgrade

Attempts to convert the PV of an SV from characters to bytes. If the PV contains a
character beyond byte, this conversion will fail; in this case, either returns false or, if

is not true, croaks.

This is not as a general purpose Unicode to byte encoding interface: use the Encode
extension for that.

Perl version 5.8.6 documentation - perlapi

Page 49http://perldoc.perl.org

newSVrv
sv_unref_flags flag SvROK_off

newSVrv
cflags SV_IMMEDIATE_UNREF

SvROK_off

SvTAINTED_off

SvUPGRADE svtype

ptr
ptr

malloc len
ptr

sv_usepvn_mg

sv_usepvn

SvUTF8
SvUTF8

fail_ok

void sv_unref(SV* sv)

void sv_unref_flags(SV* sv, U32 flags)

bool sv_upgrade(SV* sv, U32 mt)

void sv_usepvn(SV* sv, char* ptr, STRLEN len)

void sv_usepvn_mg(SV *sv, char *ptr, STRLEN len)

bool sv_utf8_decode(SV *sv)

NOTE: this function is experimental and may change or be removed without notice.

sv_utf8_encode

Converts the PV of an SV to UTF-8, but then turns the flag off so that it looks
like octets again.

sv_utf8_upgrade

Converts the PV of an SV to its UTF-8-encoded form. Forces the SV to string form if it
is not already. Always sets the SvUTF8 flag to avoid future validity checks even if all
the bytes have hibit clear.

This is not as a general purpose byte encoding to Unicode interface: use the Encode
extension for that.

sv_utf8_upgrade_flags

Converts the PV of an SV to its UTF-8-encoded form. Forces the SV to string form if it
is not already. Always sets the SvUTF8 flag to avoid future validity checks even if all
the bytes have hibit clear. If has bit set, will on if
appropriate, else not. and are
implemented in terms of this function.

This is not as a general purpose byte encoding to Unicode interface: use the Encode
extension for that.

sv_uv

A private implementation of the macro for compilers which can't cope with
complex macro expressions. Always use the macro instead.

sv_vcatpvf

Processes its arguments like and appends the formatted output to an SV.
Does not handle 'set' magic. See .

Usually used via its frontend .

sv_vcatpvfn

Processes its arguments like and appends the formatted output to an SV.
Uses an array of SVs if the C style variable argument list is missing (NULL). When
running with taint checks enabled, indicates via if results are
untrustworthy (often due to the use of locales).

Usually used via one of its frontends and .

sv_vcatpvf_mg

Like , but also handles 'set' magic.

Perl version 5.8.6 documentation - perlapi

Page 50http://perldoc.perl.org

bool sv_utf8_downgrade(SV *sv, bool fail_ok)

void sv_utf8_encode(SV *sv)

STRLEN sv_utf8_upgrade(SV *sv)

STRLEN sv_utf8_upgrade_flags(SV *sv, I32 flags)

UV sv_uv(SV* sv)

void sv_vcatpvf(SV* sv, const char* pat, va_list* args)

void sv_vcatpvfn(SV* sv, const char* pat, STRLEN patlen,
va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)

SvUTF8

flags SV_GMAGIC mg_get sv
sv_utf8_upgrade sv_utf8_upgrade_nomg

SvUVx

vsprintf
sv_vcatpvf_mg

sv_catpvf

vsprintf

maybe_tainted

sv_vcatpvf sv_vcatpvf_mg

sv_vcatpvf

Usually used via its frontend .

sv_vsetpvf

Works like but copies the text into the SV instead of appending it. Does
not handle 'set' magic. See .

Usually used via its frontend .

sv_vsetpvfn

Works like but copies the text into the SV instead of appending it.

Usually used via one of its frontends and .

sv_vsetpvf_mg

Like , but also handles 'set' magic.

Usually used via its frontend .

bytes_from_utf8

Converts a string of length from UTF-8 into byte encoding. Unlike
<utf8_to_bytes> but like , returns a pointer to the newly-created
string, and updates to contain the new length. Returns the original string if no
conversion occurs, is unchanged. Do nothing if points to 0. Sets

to 0 if is converted or contains all 7bit characters.

NOTE: this function is experimental and may change or be removed without notice.

bytes_to_utf8

Converts a string of length from ASCII into UTF-8 encoding. Returns a pointer
to the newly-created string, and sets to reflect the new length.

If you want to convert to UTF-8 from other encodings than ASCII, see
sv_recode_to_utf8().

NOTE: this function is experimental and may change or be removed without notice.

ibcmp_utf8

Return true if the strings s1 and s2 differ case-insensitively, false if not (if they are
equal case-insensitively). If u1 is true, the string s1 is assumed to be in
UTF-8-encoded Unicode. If u2 is true, the string s2 is assumed to be in
UTF-8-encoded Unicode. If u1 or u2 are false, the respective string is assumed to be
in native 8-bit encoding.

If the pe1 and pe2 are non-NULL, the scanning pointers will be copied in there (they
will point at the beginning of the character). If the pointers behind pe1 or pe2 are
non-NULL, they are the end pointers beyond which scanning will not continue under

Perl version 5.8.6 documentation - perlapi

Page 51http://perldoc.perl.org

sv_catpvf_mg

sv_vcatpvf
sv_vsetpvf_mg

sv_setpvf

sv_vcatpvfn

sv_vsetpvf sv_vsetpvf_mg

sv_vsetpvf

sv_setpvf_mg

s len
bytes_to_utf8

len
len is_utf8

is_utf8 s

s len
len

void sv_vcatpvf_mg(SV* sv, const char* pat, va_list* args)

void sv_vsetpvf(SV* sv, const char* pat, va_list* args)

void sv_vsetpvfn(SV* sv, const char* pat, STRLEN patlen,
va_list* args, SV** svargs, I32 svmax, bool *maybe_tainted)

void sv_vsetpvf_mg(SV* sv, const char* pat, va_list* args)

U8* bytes_from_utf8(U8 *s, STRLEN *len, bool *is_utf8)

U8* bytes_to_utf8(U8 *s, STRLEN *len)

Unicode Support

next

any circumstances. If the byte lengths l1 and l2 are non-zero, s1+l1 and s2+l2 will be
used as goal end pointers that will also stop the scan, and which qualify towards
defining a successful match: all the scans that define an explicit length must reach
their goal pointers for a match to succeed).

For case-insensitiveness, the "casefolding" of Unicode is used instead of
upper/lowercasing both the characters, see
http://www.unicode.org/unicode/reports/tr21/ (Case Mappings).

is_utf8_char

Tests if some arbitrary number of bytes begins in a valid UTF-8 character. Note that an
INVARIANT (i.e. ASCII) character is a valid UTF-8 character. The actual number of
bytes in the UTF-8 character will be returned if it is valid, otherwise 0.

is_utf8_string

Returns true if first bytes of the given string form a valid UTF-8 string, false
otherwise. Note that 'a valid UTF-8 string' does not mean 'a string that contains code
points above 0x7F encoded in UTF-8' because a valid ASCII string is a valid UTF-8
string.

is_utf8_string_loc

Like is_ut8_string but store the location of the failure in the last argument.

pv_uni_display

Build to the scalar dsv a displayable version of the string spv, length len, the
displayable version being at most pvlim bytes long (if longer, the rest is truncated and
"..." will be appended).

The flags argument can have UNI_DISPLAY_ISPRINT set to display isPRINT()able
characters as themselves, UNI_DISPLAY_BACKSLASH to display the \\[nrfta\\] as the
backslashed versions (like '\n') (UNI_DISPLAY_BACKSLASH is preferred over
UNI_DISPLAY_ISPRINT for \\). UNI_DISPLAY_QQ (and its alias
UNI_DISPLAY_REGEX) have both UNI_DISPLAY_BACKSLASH and
UNI_DISPLAY_ISPRINT turned on.

The pointer to the PV of the dsv is returned.

sv_cat_decode

The encoding is assumed to be an Encode object, the PV of the ssv is assumed to be
octets in that encoding and decoding the input starts from the position which (PV +
*offset) pointed to. The dsv will be concatenated the decoded UTF-8 string from ssv.
Decoding will terminate when the string tstr appears in decoding output or the input
ends on the PV of the ssv. The value which the offset points will be modified to the last
input position on the ssv.

Returns TRUE if the terminator was found, else returns FALSE.

Perl version 5.8.6 documentation - perlapi

Page 52http://perldoc.perl.org

I32 ibcmp_utf8(const char* a, char **pe1, UV l1, bool u1, const
char* b, char **pe2, UV l2, bool u2)

STRLEN is_utf8_char(U8 *p)

bool is_utf8_string(U8 *s, STRLEN len)

bool is_utf8_string_loc(U8 *s, STRLEN len, U8 **p)

char* pv_uni_display(SV *dsv, U8 *spv, STRLEN len, STRLEN
pvlim, UV flags)

len

sv_recode_to_utf8

The encoding is assumed to be an Encode object, on entry the PV of the sv is
assumed to be octets in that encoding, and the sv will be converted into Unicode (and
UTF-8).

If the sv already is UTF-8 (or if it is not POK), or if the encoding is not a reference,
nothing is done to the sv. If the encoding is not an Encoding object, bad
things will happen. (See and).

The PV of the sv is returned.

sv_uni_display

Build to the scalar dsv a displayable version of the scalar sv, the displayable version
being at most pvlim bytes long (if longer, the rest is truncated and "..." will be
appended).

The flags argument is as in pv_uni_display().

The pointer to the PV of the dsv is returned.

to_utf8_case

The "p" contains the pointer to the UTF-8 string encoding the character that is being
converted.

The "ustrp" is a pointer to the character buffer to put the conversion result to. The
"lenp" is a pointer to the length of the result.

The "swashp" is a pointer to the swash to use.

Both the special and normal mappings are stored lib/unicore/To/Foo.pl, and loaded by
SWASHGET, using lib/utf8_heavy.pl. The special (usually, but not always, a
multicharacter mapping), is tried first.

The "special" is a string like "utf8::ToSpecLower", which means the hash
%utf8::ToSpecLower. The access to the hash is through Perl_to_utf8_case().

The "normal" is a string like "ToLower" which means the swash %utf8::ToLower.

to_utf8_fold

Convert the UTF-8 encoded character at p to its foldcase version and store that in
UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least
UTF8_MAXLEN_FOLD+1 bytes since the foldcase version may be longer than the
original character (up to three characters).

The first character of the foldcased version is returned (but note, as explained above,
that there may be more.)

to_utf8_lower

Convert the UTF-8 encoded character at p to its lowercase version and store that in
UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least

Perl version 5.8.6 documentation - perlapi

Page 53http://perldoc.perl.org

bool sv_cat_decode(SV* dsv, SV *encoding, SV *ssv, int *offset,
char* tstr, int tlen)

char* sv_recode_to_utf8(SV* sv, SV *encoding)

char* sv_uni_display(SV *dsv, SV *ssv, STRLEN pvlim, UV flags)

UV to_utf8_case(U8 *p, U8* ustrp, STRLEN *lenp, SV **swash,
char *normal, char *special)

UV to_utf8_fold(U8 *p, U8* ustrp, STRLEN *lenp)

Encode::XS
lib/encoding.pm Encode

UTF8_MAXLEN_UCLC+1 bytes since the lowercase version may be longer than the
original character (up to two characters).

The first character of the lowercased version is returned (but note, as explained above,
that there may be more.)

to_utf8_title

Convert the UTF-8 encoded character at p to its titlecase version and store that in
UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least
UTF8_MAXLEN_UCLC+1 bytes since the titlecase version may be longer than the
original character (up to two characters).

The first character of the titlecased version is returned (but note, as explained above,
that there may be more.)

to_utf8_upper

Convert the UTF-8 encoded character at p to its uppercase version and store that in
UTF-8 in ustrp and its length in bytes in lenp. Note that the ustrp needs to be at least
UTF8_MAXLEN_UCLC+1 bytes since the uppercase version may be longer than the
original character (up to two characters).

The first character of the uppercased version is returned (but note, as explained
above, that there may be more.)

utf8n_to_uvchr

Returns the native character value of the first character in the string which is
assumed to be in UTF-8 encoding; will be set to the length, in bytes, of that
character.

Allows length and flags to be passed to low level routine.

utf8n_to_uvuni

Bottom level UTF-8 decode routine. Returns the unicode code point value of the first
character in the string which is assumed to be in UTF-8 encoding and no longer than

; will be set to the length, in bytes, of that character.

If does not point to a well-formed UTF-8 character, the behaviour is dependent on
the value of : if it contains UTF8_CHECK_ONLY, it is assumed that the caller
will raise a warning, and this function will silently just set to and return
zero. If the does not contain UTF8_CHECK_ONLY, warnings about
malformations will be given, will be set to the expected length of the UTF-8
character in bytes, and zero will be returned.

The can also contain various flags to allow deviations from the strict UTF-8
encoding (see).

Most code should use utf8_to_uvchr() rather than call this directly.

utf8_distance

Perl version 5.8.6 documentation - perlapi

Page 54http://perldoc.perl.org

UV to_utf8_lower(U8 *p, U8* ustrp, STRLEN *lenp)

UV to_utf8_title(U8 *p, U8* ustrp, STRLEN *lenp)

UV to_utf8_upper(U8 *p, U8* ustrp, STRLEN *lenp)

UV utf8n_to_uvchr(U8 *s, STRLEN curlen, STRLEN* retlen, U32
flags)

UV utf8n_to_uvuni(U8 *s, STRLEN curlen, STRLEN* retlen, U32
flags)

s
retlen

s
curlen retlen

s
flags

retlen -1
flags

retlen

flags
utf8.h

Returns the number of UTF-8 characters between the UTF-8 pointers and .

WARNING: use only if you *know* that the pointers point inside the same UTF-8
buffer.

utf8_hop

Return the UTF-8 pointer displaced by characters, either forward or backward.

WARNING: do not use the following unless you *know* is within the UTF-8 data
pointed to by *and* that on entry is aligned on the first byte of character or just
after the last byte of a character.

utf8_length

Return the length of the UTF-8 char encoded string in characters. Stops at
(inclusive). If or if the scan would end up past , croaks.

utf8_to_bytes

Converts a string of length from UTF-8 into byte encoding. Unlike
, this over-writes the original string, and updates len to contain the

new length. Returns zero on failure, setting to -1.

NOTE: this function is experimental and may change or be removed without notice.

utf8_to_uvchr

Returns the native character value of the first character in the string which is
assumed to be in UTF-8 encoding; will be set to the length, in bytes, of that
character.

If does not point to a well-formed UTF-8 character, zero is returned and retlen is set,
if possible, to -1.

utf8_to_uvuni

Returns the Unicode code point of the first character in the string which is assumed
to be in UTF-8 encoding; will be set to the length, in bytes, of that character.

This function should only be used when returned UV is considered an index into the
Unicode semantic tables (e.g. swashes).

If does not point to a well-formed UTF-8 character, zero is returned and retlen is set,
if possible, to -1.

uvchr_to_utf8

Adds the UTF-8 representation of the Native codepoint to the end of the string ;
should be have at least free bytes available. The return value is the
pointer to the byte after the end of the new character. In other words,

is the recommended wide native character-aware way of saying

Perl version 5.8.6 documentation - perlapi

Page 55http://perldoc.perl.org

a b

s off

off
s s

s e
e < s e

s len
bytes_to_utf8

len

s
retlen

s

s
retlen

s

uv d d
UTF8_MAXLEN+1

IV utf8_distance(U8 *a, U8 *b)

U8* utf8_hop(U8 *s, I32 off)

STRLEN utf8_length(U8* s, U8 *e)

U8* utf8_to_bytes(U8 *s, STRLEN *len)

UV utf8_to_uvchr(U8 *s, STRLEN* retlen)

UV utf8_to_uvuni(U8 *s, STRLEN* retlen)

d = uvchr_to_utf8(d, uv);

uvuni_to_utf8_flags

Adds the UTF-8 representation of the Unicode codepoint to the end of the string ;
should be have at least free bytes available. The return value is

the pointer to the byte after the end of the new character. In other words,

or, in most cases,

(which is equivalent to)

is the recommended Unicode-aware way of saying

ax

Variable which is setup by to indicate the stack base offset, used by the ,
and macros. The macro must be called prior to setup

the variable.

CLASS

Variable which is setup by to indicate the class name for a C++ XS
constructor. This is always a . See .

dAX

Sets up the variable. This is usually handled automatically by by calling
.

dITEMS

Sets up the variable. This is usually handled automatically by by
calling .

dXSARGS

Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. Sets up the
and variables by calling and . This is usually handled

automatically by .

Perl version 5.8.6 documentation - perlapi

Page 56http://perldoc.perl.org

*(d++) = uv;

U8* uvchr_to_utf8(U8 *d, UV uv)

d = uvuni_to_utf8_flags(d, uv, flags);

d = uvuni_to_utf8(d, uv);

d = uvuni_to_utf8_flags(d, uv, 0);

*(d++) = uv;

U8* uvuni_to_utf8_flags(U8 *d, UV uv, UV flags)

I32 ax

char* CLASS

dAX;

dITEMS;

dXSARGS;

uv d
d UTF8_MAXLEN+1

xsubpp ST
XSprePUSH XSRETURN dMARK

MARK

xsubpp
char* THIS

ax xsubpp
dXSARGS

items xsubpp
dXSARGS

ax items dAX dITEMS
xsubpp

Variables created by xsubpp and xsubpp internal functions

dXSI32

Sets up the variable for an XSUB which has aliases. This is usually handled
automatically by .

items

Variable which is setup by to indicate the number of items on the stack. See
.

ix

Variable which is setup by to indicate which of an XSUB's aliases was used to
invoke it. See .

newXSproto

Used by to hook up XSUBs as Perl subs. Adds Perl prototypes to the subs.

RETVAL

Variable which is setup by to hold the return value for an XSUB. This is
always the proper type for the XSUB. See .

ST

Used to access elements on the XSUB's stack.

THIS

Variable which is setup by to designate the object in a C++ XSUB. This is
always the proper type for the C++ object. See and

.

XS

Macro to declare an XSUB and its C parameter list. This is handled by .

XS_VERSION

The version identifier for an XS module. This is usually handled automatically by
. See .

XS_VERSION_BOOTCHECK

Macro to verify that a PM module's $VERSION variable matches the XS module's
variable. This is usually handled automatically by . See

.

croak

Perl version 5.8.6 documentation - perlapi

Page 57http://perldoc.perl.org

dXSI32;

I32 items

I32 ix

(whatever) RETVAL

SV* ST(int ix)

(whatever) THIS

XS_VERSION_BOOTCHECK;

ix
xsubpp

xsubpp

xsubpp

xsubpp

xsubpp

xsubpp
CLASS

xsubpp

ExtUtils::MakeMaker XS_VERSION_BOOTCHECK

XS_VERSION xsubpp

"Variable-length Parameter Lists" in perlxs

"The ALIAS: Keyword" in perlxs

"The RETVAL Variable" in perlxs

"Using XS With C++" in
perlxs

"The
VERSIONCHECK: Keyword" in perlxs

Warning and Dieing

This is the XSUB-writer's interface to Perl's function. Normally call this function the
same way you call the C function. Calling returns control directly to
Perl, sidestepping the normal C order of execution. See .

If you want to throw an exception object, assign the object to and then pass
to croak():

warn

This is the XSUB-writer's interface to Perl's function. Call this function the same
way you call the C function. See .

Until May 1997, this document was maintained by Jeff Okamoto <okamoto@corp.hp.com>. It is now
maintained as part of Perl itself.

With lots of help and suggestions from Dean Roehrich, Malcolm Beattie, Andreas Koenig, Paul
Hudson, Ilya Zakharevich, Paul Marquess, Neil Bowers, Matthew Green, Tim Bunce, Spider
Boardman, Ulrich Pfeifer, Stephen McCamant, and Gurusamy Sarathy.

API Listing originally by Dean Roehrich <roehrich@cray.com>.

Updated to be autogenerated from comments in the source by Benjamin Stuhl.

perlguts(1), perlxs(1), perlxstut(1), perlintern(1)

Perl version 5.8.6 documentation - perlapi

Page 58http://perldoc.perl.org

die
printf croak

warn

$@
Nullch

warn
printf croak

errsv = get_sv("@", TRUE);
sv_setsv(errsv, exception_object);
croak(Nullch);

void croak(const char* pat, ...)

void warn(const char* pat, ...)

AUTHORS

SEE ALSO

