
perl5005delta - what's new for perl5.005

This document describes differences between the 5.004 release and this one.

Perl is now developed on two tracks: a maintenance track that makes small, safe updates to released
production versions with emphasis on compatibility; and a development track that pursues more
aggressive evolution. Maintenance releases (which should be considered production quality) have
subversion numbers that run from to , and development releases (which should be considered
"alpha" quality) run from to .

Perl 5.005 is the combined product of the new dual-track development scheme.

Starting with Perl 5.004_50 there were many deep and far-reaching changes to the language
internals. If you have dynamically loaded extensions that you built under perl 5.003 or 5.004, you can
continue to use them with 5.004, but you will need to rebuild and reinstall those extensions to use
them 5.005. See for detailed instructions on how to upgrade.

The new Configure defaults are designed to allow a smooth upgrade from 5.004 to 5.005, but you
should read for a detailed discussion of the changes in order to adapt them to your system.

When none of the experimental features are enabled, there should be very few user-visible Perl
source compatibility issues.

If threads are enabled, then some caveats apply. and become lexical variables. The effect of
this should be largely transparent to the user, but there are some boundary conditions under which
user will need to be aware of the issues. For example, results in a "Can't localize lexical
variable @_ ..." message. This may be enabled in a future version.

Some new keywords have been introduced. These are generally expected to have very little impact
on compatibility. See , , and .

Certain barewords are now reserved. Use of these will provoke a warning if you have asked for them
with the switch. See .

There have been a large number of changes in the internals to support the new features in this
release.

Core sources now require ANSI C compiler

An ANSI C compiler is now to build perl. See .

All Perl global variables must now be referenced with an explicit prefix

All Perl global variables that are visible for use by extensions now have a prefix. New
extensions should refer to perl globals by their unqualified names. To preserve sanity, we
provide limited backward compatibility for globals that are being widely used like
and (which should now be written as , etc.)

If you find that your XS extension does not compile anymore because a perl global is not
visible, try adding a prefix to the global and rebuild.

Perl version 5.8.6 documentation - perl5005delta

Page 1http://perldoc.perl.org

NAME

DESCRIPTION

About the new versioning system

Incompatible Changes

1 49
50 99

@_ $_

local(@_)

-w

PL_
not

sv_undef
na PL_sv_undef PL_na

PL_

WARNING: This version is not binary compatible with Perl 5.004.

Default installation structure has changed

Perl Source Compatibility

C Source Compatibility

INSTALL

INSTALL

New keyword New keyword New operator

is now a reserved word

INSTALL

INIT lock qr//

our

required

It is strongly recommended that all functions in the Perl API that don't begin with be
referenced with a prefix. The bare function names without the prefix are
supported with macros, but this support may cease in a future release.

See .

Enabling threads has source compatibility issues

Perl built with threading enabled requires extensions to use the new macro to initialize
the handle to access per-thread data. If you see a compiler error that talks about the variable

not being declared (when building a module that has XS code), you need to add at
the beginning of the block that elicited the error.

The API function should be used instead of directly accessing
perl globals as . The API call is backward compatible with existing perls and
provides source compatibility with threading is enabled.

See for more information.

This version is NOT binary compatible with older versions. All extensions will need to be recompiled.
Further binaries built with threads enabled are incompatible with binaries built without. This should
largely be transparent to the user, as all binary incompatible configurations have their own unique
architecture name, and extension binaries get installed at unique locations. This allows coexistence of
several configurations in the same directory hierarchy. See .

A few taint leaks and taint omissions have been corrected. This may lead to "failure" of scripts that
used to work with older versions. Compiling with -DINCOMPLETE_TAINTS provides a perl with
minimal amounts of changes to the tainting behavior. But note that the resulting perl will have known
insecurities.

Oneliners with the switch do not create temporary files anymore.

Many new warnings that were introduced in 5.004 have been made optional. Some of these warnings
are still present, but perl's new features make them less often a problem. See .

Perl has a new Social Contract for contributors. See .

The license included in much of the Perl documentation has changed. Most of the Perl documentation
was previously under the implicit GNU General Public License or the Artistic License (at the user's
choice). Now much of the documentation unambiguously states the terms under which it may be
distributed. Those terms are in general much less restrictive than the GNU GPL. See and the
individual perl manpages listed therein.

WARNING: Threading is considered an feature. Details of the implementation may
change without notice. There are known limitations and some bugs. These are expected to be fixed in
future versions.

See .

WARNING: The Compiler and related tools are considered . Features may change
without notice, and there are known limitations and bugs. Since the compiler is fully external to perl,
the default configuration will build and install it.

Perl version 5.8.6 documentation - perl5005delta

Page 2http://perldoc.perl.org

perl
Perl_ Perl_

dTHR

thr dTHR;

perl_get_sv("@",FALSE)
GvSV(errgv)

-e

perlapi

C Source Compatibility

INSTALL

New Diagnostics

Porting/Contract

perl

README.threads

Binary Compatibility

Security fixes may affect compatibility

Relaxed new mandatory warnings introduced in 5.004

Licensing

Threads

Compiler

Core Changes

experimental

experimental

The Compiler produces three different types of transformations of a perl program. The C backend
generates C code that captures perl's state just before execution begins. It eliminates the
compile-time overheads of the regular perl interpreter, but the run-time performance remains
comparatively the same. The CC backend generates optimized C code equivalent to the code path at
run-time. The CC backend has greater potential for big optimizations, but only a few optimizations are
implemented currently. The Bytecode backend generates a platform independent bytecode
representation of the interpreter's state just before execution. Thus, the Bytecode back end also
eliminates much of the compilation overhead of the interpreter.

The compiler comes with several valuable utilities.

is an experimental module to detect and warn about suspicious code, especially the cases
that the switch does not detect.

can be used to demystify perl code, and understand how perl optimizes certain
constructs.

generates cross reference reports of all definition and use of variables, subroutines and
formats in a program.

show the lexical variables used by a subroutine or file at a glance.

is a simple frontend for compiling perl.

See , , and the respective compiler modules.

Perl's regular expression engine has been seriously overhauled, and many new constructs are
supported. Several bugs have been fixed.

Here is an itemized summary:

Many new and improved optimizations

Changes in the RE engine:

Changes in Perl code using RE engine:

Many bug fixes

Note that only the major bug fixes are listed here. See for others.

Perl version 5.8.6 documentation - perl5005delta

Page 3http://perldoc.perl.org

B::Lint
-w

B::Deparse

B::Xref

B::Showlex

perlcc

ext/B/README B

Changes

Regular Expressions

Unneeded nodes removed;
Substrings merged together;
New types of nodes to process (SUBEXPR)* and similar expressions

quickly, used if the SUBEXPR has no side effects and matches
strings of the same length;

Better optimizations by lookup for constant substrings;
Better search for constants substrings anchored by $;

More optimizations to s/longer/short/;
study() was not working;
/blah/ may be optimized to an analogue of index() if $& $‘ $’ not
seen;
Unneeded copying of matched-against string removed;
Only matched part of the string is copying if $‘ $’ were not seen;

Backtracking might not restore start of $3.
No feedback if max count for * or + on "complex" subexpression

was reached, similarly (but at compile time) for {3,34567}
Primitive restrictions on max count introduced to decrease a

possibility of a segfault;

New regular expression constructs

The following new syntax elements are supported:

New operator for precompiled regular expressions

See .

Other improvements

Incompatible changes

See and .

See banner at the beginning of for details.

Perl now contains its own highly optimized qsort() routine. The new qsort() is resistant to inconsistent
comparison functions, so Perl's will not provoke coredumps any more when given poorly
written sort subroutines. (Some C library s that were being used before used to have this
problem.) In our testing, the new required the minimal number of pair-wise compares on
average, among all known implementations.

See .

Perl's signal handling is susceptible to random crashes, because signals arrive asynchronously, and
the Perl runtime is not reentrant at arbitrary times.

However, one experimental implementation of reliable signals is available when threads are enabled.

Perl version 5.8.6 documentation - perl5005delta

Page 4http://perldoc.perl.org

(ZERO-LENGTH)* could segfault;
(ZERO-LENGTH)* was prohibited;
Long REs were not allowed;
/RE/g could skip matches at the same position after a
zero-length match;

(?<=RE)
(?<!RE)
(?{ CODE })
(?i-x)
(?i:RE)
(?(COND)YES_RE|NO_RE)
(?>RE)
\z

Better debugging output (possibly with colors),
even from non-debugging Perl;

RE engine code now looks like C, not like assembler;
Behaviour of RE modifiable by ‘use re’ directive;
Improved documentation;
Test suite significantly extended;
Syntax [:^upper:] etc., reserved inside character classes;

(?i) localized inside enclosing group;
$(is not interpolated into RE any more;
/RE/g may match at the same position (with non-zero length)

after a zero-length match (bug fix).

New operator

perlre perlop

qr//

Improved malloc()

Quicksort is internally implemented

Reliable signals

malloc.c

sort()
qsort()

qsort()
qsort()

perlfunc/sort

See . Also see for how to build a Perl capable of threads.

The internals now reallocate the perl stack only at predictable times. In particular, magic calls never
trigger reallocations of the stack, because all reentrancy of the runtime is handled using a "stack of
stacks". This should improve reliability of cached stack pointers in the internals and in XSUBs.

Perl used to complain if it encountered literal carriage returns in scripts. Now they are mostly treated
like whitespace within program text. Inside string literals and here documents, literal carriage returns
are ignored if they occur paired with linefeeds, or get interpreted as whitespace if they stand alone.
This behavior means that literal carriage returns in files should be avoided. You can get the older,
more compatible (but less generous) behavior by defining the preprocessor symbol

when building perl. Of course, all this has nothing whatever to do with how
escapes like are handled within strings.

Note that this doesn't somehow magically allow you to keep all text files in DOS format. The generous
treatment only applies to files that perl itself parses. If your C compiler doesn't allow carriage returns
in files, you may still be unable to build modules that need a C compiler.

, and don't leak memory anymore when used in lvalue context. Many small leaks
that impacted applications that embed multiple interpreters have been fixed.

The build-time option has had many of the details reworked. Some previously
global variables that should have been per-interpreter now are. With care, this allows interpreters to
call each other. See the extension on CPAN.

See .

See , and .

See .

See .

See .

See .

is now optimized into a counting loop. It does not try to allocate a
1000000-size list anymore.

Barewords caused unintuitive behavior when a subroutine with the same name as a package
happened to be defined. Thus, , use the result of the call to instead of
being treated as a literal. The recommended way to write barewords in the indirect object slot is

Perl version 5.8.6 documentation - perl5005delta

Page 5http://perldoc.perl.org

Thread::Signal

PERL_STRICT_CR
\r

substr pos vec

-DMULTIPLICITY

PerlInterp

foreach (1..1000000)

new Foo @args Foo() Foo
new

INSTALL

"Temporary Values via local()" in perlsub

perlvar Errno

perlref

perlsyn

perlsub

perlvar

Reliable stack pointers

More generous treatment of carriage returns

Memory leaks

Better support for multiple interpreters

Behavior of local() on array and hash elements is now well-defined

%! is transparently tied to the Errno module

Pseudo-hashes are supported

EXPR foreach EXPR is supported

Keywords can be globally overridden

$^E is meaningful on Win32

foreach (1..1000000) optimized

Foo:: can be used as implicitly quoted package name

. Note that the method is called with a first argument of , not when
you do that.

It was impossible to test for the existence of a package without actually creating it before. Now
can be used to test if the namespace has been created.

See .

Perl5 has always had 64-bit support on systems with 64-bit longs. Starting with 5.005, the beginnings
of experimental support for systems with 32-bit long and 64-bit 'long long' integers has been added. If
you add -DUSE_LONG_LONG to your ccflags in config.sh (or manually define it in perl.h) then perl
will be built with 'long long' support. There will be many compiler warnings, and the resultant perl may
not work on all systems. There are many other issues related to third-party extensions and libraries.
This option exists to allow people to work on those issues.

See .

now accepts a reference value, and gets set to that value in exception traps. This makes it
possible to propagate exception objects. This is an undocumented feature.

See .

See .

subs are like and , but they get run just before the perl runtime begins execution.
e.g., the Perl Compiler makes use of blocks to initialize and resolve pointers to XSUBs.

The keyword is the fundamental synchronization primitive in threaded perl. When threads are
not enabled, it is currently a noop.

To minimize impact on source compatibility this keyword is "weak", i.e., any user-defined subroutine
of the same name overrides it, unless a has been seen.

The operator, which is syntactically similar to the other quote-like operators, is used to create
precompiled regular expressions. This compiled form can now be explicitly passed around in
variables, and interpolated in other regular expressions. See .

Calling a subroutine with the name will now provoke a warning when using the switch.

See .

Perl version 5.8.6 documentation - perl5005delta

Page 6http://perldoc.perl.org

Foo:: @args new() Foo Foo::

exists $Foo::{Bar::} Foo::Bar

die() $@

INIT BEGIN END
INIT

lock

use Thread

qr//

our -w

exists $Foo::{Bar::} tests existence of a package

Better locale support

Experimental support for 64-bit platforms

prototype() returns useful results on builtins

Extended support for exception handling

Re-blessing in DESTROY() supported for chaining DESTROY() methods

All printf format conversions are handled internally

New INIT keyword

New lock keyword

New qr// operator

our is now a reserved word

Tied arrays are now fully supported

perllocale

"prototype" in perlfunc

"Destructors" in perlobj

"printf" in perlfunc

perlop

Tie::Array

experimental

Several missing hooks have been added. There is also a new base class for TIEARRAY
implementations. See .

substr() can now both return and replace in one operation. The optional 4th argument is the
replacement string. See .

splice() with a negative LENGTH argument now work similar to what the LENGTH did for substr().
Previously a negative LENGTH was treated as 0. See .

When you say something like , the scalar returned by substr() is special, in
that any modifications to it affect $x. (This is called a 'magic lvalue' because an 'lvalue' is something
on the left side of an assignment.) Normally, this is exactly what you would expect to happen, but Perl
uses the same magic if you use substr(), pos(), or vec() in a context where they might be modified,
like taking a reference with or as an argument to a sub that modifies . In previous versions, this
'magic' only went one way, but now changes to the scalar the magic refers to ($x in the above
example) affect the magic lvalue too. For instance, this code now acts differently:

In previous versions, this would print "hello", but it now prints "g'bye".

If is a reference to an integer, or a scalar that holds an integer, <> will read in records instead of
lines. For more info, see .

Configure has many incremental improvements. Site-wide policy for building perl can now be made
persistent, via Policy.sh. Configure also records the command-line arguments used in .

BeOS is now supported. See .

DOS is now supported under the DJGPP tools. See (installed as on some
systems).

MiNT is now supported. See .

MPE/iX is now supported. See .

MVS (aka OS390, aka Open Edition) is now supported. See (installed as
on some systems).

Stratus VOS is now supported. See .

Win32 support has been vastly enhanced. Support for Perl Object, a C++ encapsulation of Perl. GCC
and EGCS are now supported on Win32. See , aka .

Perl version 5.8.6 documentation - perl5005delta

Page 7http://perldoc.perl.org

Tied handles support is better

4th argument to substr

Negative LENGTH argument to splice

Magic lvalues are now more magical

<> now reads in records

New Platforms

Changes in existing support

Tie::Array

"substr" in perlfunc

"splice" in perlfunc

"$/" in perlvar

config.sh

README.beos

README.dos perldos

README.mint

README.mpeix

README.os390 perlos390

README.vos

README.win32 perlwin32

substr($x, 5) = "hi"

\ @_

$/

$x = "hello";
sub printit {

$x = "g’bye";
print $_[0], "\n";

}
printit(substr($x, 0, 5));

Supported Platforms

VMS configuration system has been rewritten. See (installed as on
some systems).

The hints files for most Unix platforms have seen incremental improvements.

B

Perl compiler and tools. See .

Data::Dumper

A module to pretty print Perl data. See .

Dumpvalue

A module to dump perl values to the screen. See .

Errno

A module to look up errors more conveniently. See .

File::Spec

A portable API for file operations.

ExtUtils::Installed

Query and manage installed modules.

ExtUtils::Packlist

Manipulate .packlist files.

Fatal

Make functions/builtins succeed or die.

IPC::SysV

Constants and other support infrastructure for System V IPC operations in perl.

Test

A framework for writing testsuites.

Tie::Array

Base class for tied arrays.

Tie::Handle

Base class for tied handles.

Thread

Perl thread creation, manipulation, and support.

attrs

Set subroutine attributes.

fields

Compile-time class fields.

re

Various pragmata to control behavior of regular expressions.

Perl version 5.8.6 documentation - perl5005delta

Page 8http://perldoc.perl.org

README.vms README_vms

B

Data::Dumper

Dumpvalue

Errno

Modules and Pragmata
New Modules

Benchmark

You can now run tests for seconds instead of guessing the right number of tests to run.

Keeps better time.

Carp

Carp has a new function cluck(). cluck() warns, like carp(), but also adds a stack backtrace to
the error message, like confess().

CGI

CGI has been updated to version 2.42.

Fcntl

More Fcntl constants added: F_SETLK64, F_SETLKW64, O_LARGEFILE for large (more than
4G) file access (the 64-bit support is not yet working, though, so no need to get overly
excited), Free/Net/OpenBSD locking behaviour flags F_FLOCK, F_POSIX, Linux F_SHLCK,
and O_ACCMODE: the mask of O_RDONLY, O_WRONLY, and O_RDWR.

Math::Complex

The accessors methods Re, Im, arg, abs, rho, theta, methods can ($z->Re()) now also act as
mutators ($z->Re(3)).

Math::Trig

A little bit of radial trigonometry (cylindrical and spherical) added, for example the great circle
distance.

POSIX

POSIX now has its own platform-specific hints files.

DB_File

DB_File supports version 2.x of Berkeley DB. See .

MakeMaker

MakeMaker now supports writing empty makefiles, provides a way to specify that site umask()
policy should be honored. There is also better support for manipulation of .packlist files, and
getting information about installed modules.

Extensions that have both architecture-dependent and architecture-independent files are now
always installed completely in the architecture-dependent locations. Previously, the shareable
parts were shared both across architectures and across perl versions and were therefore
liable to be overwritten with newer versions that might have subtle incompatibilities.

CPAN

See and .

Cwd

Cwd::cwd is faster on most platforms.

and related utilities have been vastly overhauled.

, a new experimental front end for the compiler is available.

The crude GNU emulator is now called to avoid trampling on
under case-insensitive filesystems.

used to be rather slow. The slower features are now optional. In particular, case-insensitive

Perl version 5.8.6 documentation - perl5005delta

Page 9http://perldoc.perl.org

Changes in existing modules

x

perlmodinstall CPAN

ext/DB_File/Changes

h2ph

perlcc

configure configure.gnu
Configure

perldoc

Utility Changes

searches need the switch, and recursive searches need . You can set these switches in the
environment variable to get the old behavior.

Config.pm now has a glossary of variables.

has detailed instructions on how to create and submit patches for perl.

specifies guidelines on how to write portably.

describes how to fetch and install modules from sites.

Some more Perl traps are documented now. See .

gives a tutorial on using open().

gives a tutorial on references.

gives a tutorial on threads.

Ambiguous call resolved as CORE::%s(), qualify as such or use &

(W) A subroutine you have declared has the same name as a Perl keyword, and you have
used the name without qualification for calling one or the other. Perl decided to call the builtin
because the subroutine is not imported.

To force interpretation as a subroutine call, either put an ampersand before the subroutine
name, or qualify the name with its package. Alternatively, you can import the subroutine (or
pretend that it's imported with the pragma).

To silently interpret it as the Perl operator, use the prefix on the operator (e.g.
) or by declaring the subroutine to be an object method (see).

Bad index while coercing array into hash

(F) The index looked up in the hash found as the 0'th element of a pseudo-hash is not legal.
Index values must be at 1 or greater. See .

Bareword "%s" refers to nonexistent package

(W) You used a qualified bareword of the form , but the compiler saw no other uses of
that namespace before that point. Perhaps you need to predeclare a package?

Can't call method "%s" on an undefined value

(F) You used the syntax of a method call, but the slot filled by the object reference or package
name contains an undefined value. Something like this will reproduce the error:

Can't check filesystem of script "%s" for nosuid

(P) For some reason you can't check the filesystem of the script for nosuid.

Can't coerce array into hash

(F) You used an array where a hash was expected, but the array has no information on how to
map from keys to array indices. You can do that only with arrays that have a hash reference at
index 0.

Can't goto subroutine from an eval-string

(F) The "goto subroutine" call can't be used to jump out of an eval "string". (You can use it to

Perl version 5.8.6 documentation - perl5005delta

Page 10http://perldoc.perl.org

-i -r
PERLDOC

CPAN

use subs

CORE::
CORE::log($x)

Foo::

Documentation Changes

New Diagnostics

Porting/patching.pod

perlport

perlmodinstall

perltrap

perlopentut

perlreftut

perlthrtut

attrs

perlref

$BADREF = 42;
process $BADREF 1,2,3;
$BADREF->process(1,2,3);

jump out of an eval {BLOCK}, but you probably don't want to.)

Can't localize pseudo-hash element

(F) You said something like , where $ar is a reference to a
pseudo-hash. That hasn't been implemented yet, but you can get a similar effect by localizing
the corresponding array element directly -- .

Can't use %%! because Errno.pm is not available

(F) The first time the %! hash is used, perl automatically loads the Errno.pm module. The
Errno module is expected to tie the %! hash to provide symbolic names for errno values.

Cannot find an opnumber for "%s"

(F) A string of a form was given to prototype(), but there is no builtin with the
name .

Character class syntax [. .] is reserved for future extensions

(W) Within regular expression character classes ([]) the syntax beginning with "[." and ending
with ".]" is reserved for future extensions. If you need to represent those character sequences
inside a regular expression character class, just quote the square brackets with the backslash:
"\[." and ".\]".

Character class syntax [: :] is reserved for future extensions

(W) Within regular expression character classes ([]) the syntax beginning with "[:" and ending
with ":]" is reserved for future extensions. If you need to represent those character sequences
inside a regular expression character class, just quote the square brackets with the backslash:
"\[:" and ":\]".

Character class syntax [= =] is reserved for future extensions

(W) Within regular expression character classes ([]) the syntax beginning with "[=" and ending
with "=]" is reserved for future extensions. If you need to represent those character sequences
inside a regular expression character class, just quote the square brackets with the backslash:
"\[=" and "=\]".

%s: Eval-group in insecure regular expression

(F) Perl detected tainted data when trying to compile a regular expression that contains the
zero-width assertion, which is unsafe. See , and .

%s: Eval-group not allowed, use re 'eval'

(F) A regular expression contained the zero-width assertion, but that construct is
only allowed when the pragma is in effect. See .

%s: Eval-group not allowed at run time

(F) Perl tried to compile a regular expression containing the zero-width assertion
at run time, as it would when the pattern contains interpolated values. Since that is a security
risk, it is not allowed. If you insist, you may still do this by explicitly building the pattern from an
interpolated string at run time and using that in an eval(). See .

Explicit blessing to '' (assuming package main)

(W) You are blessing a reference to a zero length string. This has the effect of blessing the
reference into the package main. This is usually not what you want. Consider providing a
default target package, e.g. bless($ref, $p || 'MyPackage');

Illegal hex digit ignored

(W) You may have tried to use a character other than 0 - 9 or A - F in a hexadecimal number.
Interpretation of the hexadecimal number stopped before the illegal character.

Perl version 5.8.6 documentation - perl5005delta

Page 11http://perldoc.perl.org

local $ar->{’key’}

local $ar->[$ar->[0]{’key’}]

$!

CORE::word
word

(?{ ... })

(?{ ... })
use re ’eval’

(?{ ... })

"(?{ code })" in perlre perlsec

"(?{ code })" in perlre

"(?{ code })" in perlre

No such array field

(F) You tried to access an array as a hash, but the field name used is not defined. The hash at
index 0 should map all valid field names to array indices for that to work.

No such field "%s" in variable %s of type %s

(F) You tried to access a field of a typed variable where the type does not know about the field
name. The field names are looked up in the %FIELDS hash in the type package at compile
time. The %FIELDS hash is usually set up with the 'fields' pragma.

Out of memory during ridiculously large request

(F) You can't allocate more than 2^31+"small amount" bytes. This error is most likely to be
caused by a typo in the Perl program. e.g., instead of .

Range iterator outside integer range

(F) One (or both) of the numeric arguments to the range operator ".." are outside the range
which can be represented by integers internally. One possible workaround is to force Perl to
use magical string increment by prepending "0" to your numbers.

Recursive inheritance detected while looking for method '%s' %s

(F) More than 100 levels of inheritance were encountered while invoking a method. Probably
indicates an unintended loop in your inheritance hierarchy.

Reference found where even-sized list expected

(W) You gave a single reference where Perl was expecting a list with an even number of
elements (for assignment to a hash). This usually means that you used the anon hash
constructor when you meant to use parens. In any case, a hash requires key/value .

Undefined value assigned to typeglob

(W) An undefined value was assigned to a typeglob, a la . This does nothing.
It's possible that you really mean .

Use of reserved word "%s" is deprecated

(D) The indicated bareword is a reserved word. Future versions of perl may use it as a
keyword, so you're better off either explicitly quoting the word in a manner appropriate for its
context of use, or using a different name altogether. The warning can be suppressed for
subroutine names by either adding a prefix, or using a package qualifier, e.g. , or

.

perl: warning: Setting locale failed.

(S) The whole warning message will look something like:

Exactly what were the failed locale settings varies. In the above the settings were that the
LC_ALL was "En_US" and the LANG had no value. This error means that Perl detected that
you and/or your system administrator have set up the so-called variable system but Perl could

Perl version 5.8.6 documentation - perl5005delta

Page 12http://perldoc.perl.org

$arr[time] $arr[$time]

*foo = undef
undef *foo

& &our()
Foo::our()

pairs

%hash = { one => 1, two => 2, }; # WRONG
%hash = [qw/ an anon array /]; # WRONG
%hash = (one => 1, two => 2,); # right
%hash = qw(one 1 two 2); # also fine

perl: warning: Setting locale failed.
perl: warning: Please check that your locale settings:

LC_ALL = "En_US",
LANG = (unset)

are supported and installed on your system.
perl: warning: Falling back to the standard locale ("C").

not use those settings. This was not dead serious, fortunately: there is a "default locale" called
"C" that Perl can and will use, the script will be run. Before you really fix the problem, however,
you will get the same error message each time you run Perl. How to really fix the problem can
be found in .

Can't mktemp()

(F) The mktemp() routine failed for some reason while trying to process a switch. Maybe
your /tmp partition is full, or clobbered.

Removed because doesn't use temporary files any more.

Can't write to temp file for : %s

(F) The write routine failed for some reason while trying to process a switch. Maybe your
/tmp partition is full, or clobbered.

Removed because doesn't use temporary files any more.

Cannot open temporary file

(F) The create routine failed for some reason while trying to process a switch. Maybe your
/tmp partition is full, or clobbered.

Removed because doesn't use temporary files any more.

regexp too big

(F) The current implementation of regular expressions uses shorts as address offsets within a
string. Unfortunately this means that if the regular expression compiles to longer than 32767,
it'll blow up. Usually when you want a regular expression this big, there is a better way to do it
with multiple statements. See .

You can use "Configure -Uinstallusrbinperl" which causes installperl to skip installing perl also as
/usr/bin/perl. This is useful if you prefer not to modify /usr/bin for some reason or another but harmful
because many scripts assume to find Perl in /usr/bin/perl.

If you find what you think is a bug, you might check the headers of recently posted articles in the
comp.lang.perl.misc newsgroup. There may also be information at http://www.perl.com/perl/ , the Perl
Home Page.

If you believe you have an unreported bug, please run the program included with your
release. Make sure you trim your bug down to a tiny but sufficient test case. Your bug report, along
with the output of , will be sent off to < > to be analysed by the Perl porting
team.

The file for exhaustive details on what changed.

The file for how to build Perl.

The file for general stuff.

The and files for copyright information.

Written by Gurusamy Sarathy < >, with many contributions from The Perl
Porters.

Send omissions or corrections to < >.

Perl version 5.8.6 documentation - perl5005delta

Page 13http://perldoc.perl.org

"LOCALE PROBLEMS" in perllocale

perlre

perlbug@perl.com

Changes

INSTALL

README

Artistic Copying

gsar@activestate.com

perlbug@perl.com

Obsolete Diagnostics

Configuration Changes

BUGS

SEE ALSO

HISTORY

-e

-e

-e

-e

-e

-e

-e

perlbug

perl -V

Perl version 5.8.6 documentation - perl5005delta

Page 14http://perldoc.perl.org

