
bigrat - Transparent BigNumber/BigRational support for Perl

All operators (inlcuding basic math operations) are overloaded. Integer and floating-point constants
are created as proper BigInts or BigFloats, respectively.

Other than , this module upgrades to Math::BigRat, meaning that instead of 2.5 you will get
2+1/2 as output.

is just a thin wrapper around various modules of the Math::BigInt family. Think of it as the
head of the family, who runs the shop, and orders the others to do the work.

The following modules are currently used by bignum:

Math with the numbers is done (by default) by a module called Math::BigInt::Calc. This is equivalent to
saying:

You can change this by using:

The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

Please see respective module documentation for further details.

The sign is either '+', '-', 'NaN', '+inf' or '-inf' and stored seperately.

A sign of 'NaN' is used to represent the result when input arguments are not numbers or as a result of
0/0. '+inf' and '-inf' represent plus respectively minus infinity. You will get '+inf' when dividing a positive
number by 0, and '-inf' when dividing any negative number by 0.

Since all numbers are not objects, you can use all functions that are part of the BigInt or BigFloat API.
It is wise to use only the bxxx() notation, and not the fxxx() notation, though. This makes you
independed on the fact that the underlying object might morph into a different class than BigFloat.

Perl version 5.8.6 documentation - bigrat

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

use bigrat;

$x = 2 + 4.5,"\n"; # BigFloat 6.5
print 1/3 + 1/4,"\n"; # produces 7/12

Math::BigInt::Lite (for speed, and only if it is loadable)
Math::BigInt
Math::BigFloat
Math::BigRat

use bigrat lib => ’Calc’;

use bigrat lib => ’BitVect’;

use bigrat lib => ’Foo,Math::BigInt::Bar’;

bignum

MODULES USED

MATH LIBRARY

SIGN

METHODS

bigrat

But a warning is in order. When using the following to make a copy of a number, only a shallow copy
will be made.

Using the copy or the original with overloaded math is okay, e.g. the following work:

but calling any method that modifies the number directly will result in the original and the copy
beeing destroyed:

Using methods that do not modify, but testthe contents works:

See the documentation about the copy constructor and in overload, as well as the documentation in
BigInt for further details.

This program is free software; you may redistribute it and/or modify it under the same terms as Perl
itself.

Especially .

, , and as well as ,
and .

(C) by Tels in early 2002.

Perl version 5.8.6 documentation - bigrat

Page 2http://perldoc.perl.org

CAVEAT

$x = 9; $y = $x;
$x = $y = 7;

$x = 9; $y = $x;
print $x + 1, " ", $y,"\n"; # prints 10 9

$x = 9; $y = $x;
print $x->badd(1), " ", $y,"\n"; # prints 10 10

$x = 9; $y = $x;
print $x->binc(1), " ", $y,"\n"; # prints 10 10

$x = 9; $y = $x;
print $x->bmul(2), " ", $y,"\n"; # prints 18 18

$x = 9; $y = $x;
$z = 9 if $x->is_zero(); # works fine

perl -Mbigrat -le ’print sqrt(33)’
perl -Mbigrat -le ’print 2*255’
perl -Mbigrat -le ’print 4.5+2*255’
perl -Mbigrat -le ’print 3/7 + 5/7 + 8/3’
perl -Mbigrat -le ’print 12->is_odd()’;

both

=

EXAMPLES

LICENSE

SEE ALSO

AUTHORS

bignum

Math::BigFloat Math::BigInt Math::BigRat Math::Big Math::BigInt::BitVect
Math::BigInt::Pari Math::BigInt::GMP

http://bloodgate.com/

