
Programming Distributed Erlang Applications:
Pitfalls and Recipes

Hans Svensson
Dept. of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

hanssv@cs.chalmers.se

Lars-Åke Fredlund ∗

Facultad de Informática, Universidad Politécnica de
Madrid, Spain

fred@babel.ls.fi.upm.es

Abstract
We investigate the distributed part of the Erlang programming
language, with an aim to develop robust distributed systems and
algorithms running on top of Erlang runtime systems. Although
the step to convert an application running on a single node to
a fully distributed (multi-node) application is deceptively simple
(changing calls to spawn so that processes are spawned on different
nodes), there are some corner cases in the Erlang language and API
where the introduction of distribution can cause problems. In this
paper we discuss a number of such pitfalls, where the semantics
of communicating processes differs significantly depending if the
processes reside on the same node or not, we also provide some
guidelines for safe programming of distributed systems.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Reliability

1. Introduction
Our aim is to write and debug distributed algorithms that uses the
Erlang distribution mechanism for process communication. To do
this in a successful way we must have a precise knowledge of the
communication guarantees given by the Erlang distribution mech-
anism. This is needed in order to determine whether the guarantees
matches the (varying) requirements of the distributed algorithms. A
large part of this research program is devoted to the development of
a formal semantics, which includes distribution, for the Erlang pro-
gramming language [CS05]. In the task of writing a model checker
implementing the “distributed Erlang” [FS07], we came across a
number of areas where we were not absolutely certain that the for-
mal semantics actually were an accurate account of the behavior of
the Erlang distribution layer. However, since not every critical as-
pect of the distribution support is documented1 , it is necessary to do

∗ The author was supported by a Ramón y Cajal grant from the Spanish
Ministerio de Educación y Ciencia, and the DESAFIOS (TIN2006-15660-
C02-02) and PROMESAS (S-0505/TIC/0407) projects.
1 except, of course, in the source code. . .

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Erlang’07, October 5, 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-675-2/07/0010. . . $5.00

some experimental work. We have written programs that test var-
ious basic features of the runtime system, and also examined the
source code of the runtime system, in order to draw conclusions
regarding the real behavior of the distributed parts of Erlang.

The outcome is the companion paper refining the distributed
semantics of Erlang [SF07] and this paper where we focus on
the practical consequences of the support for distribution available
in Erlang. That is, illustrating what can go wrong, and providing
advice on how can we program reliable distributed applications
using the Erlang distributed mechanism.

2. Intra-Node Programming
The basic tools for programming Erlang intra-node applications are
well known. Communication is achieved using the send and receive
constructs; links and monitors are used to build robust applications
that survive process failures.

The basic tools for programming fault tolerant Erlang applica-
tions are the link and monitor constructs. They permit one process
to receive a failure indication when another process has terminated.
A common abstraction mechanism used in implementations of dis-
tributed applications is failure detectors, which serves the same
purpose as the Erlang links and monitors.

Note that the link and monitor mechanism, when monitoring
another process at the same node, cannot guarantee any kind of
“semantic liveness” of the monitored process. It may be that the
monitored process is waiting for the reception of a message that is
sure never to arrive. It is defacto dead, but no process termination
message will ever reach the monitoring process. For that, and other
reasons, the use of timers to bound the waiting time for process
communication is needed even in the intra-node case.

Below we exemplify in subsections the basic communication
guarantees provided for intra-node communication.

2.1 Basic Message Passing Guarantee: Stream Semantics
The basic guarantee for message passing, in the intra-node case,
is that messages sent from one process to another are delivered in
order, if they are delivered at all, without message corruption or
duplication. When we say that a message has been delivered to a
process P we mean concretely that the message has been left in the
mailbox of process P . Also, which is unfortunate, when a message
m has been delivered to P we say that P has received the value.
This does not mean that P has chosen to extract the message from
its mailbox using a receive construct, but only that the message
is available in its mailbox.

37

In practice the guarantee means, for instance, that if two mes-
sages m1 and m2 are sent, in order, from a process Q to a process
P then either
• the messages are delivered, in order, at P

• only the m1 message is delivered (effectively P crashed some-
time after the reception of m1)

• none of the messages are delivered

Such a message sending and reception guarantee matches well the
communication guarantees provided by TCP/IP channels, which
are commonly used to connect Erlang distributed nodes. We refer
to this communication guarantee as the streaming guarantee.

Note that the guarantee says nothing about the semantics of the
receiving process; i.e., whether the process really processed the re-
ceived value and acted on it. The process P could for instance have
a bug that causes it to crash just after receiving m1. If the sender,
process Q, wishes to establish that P has acted on its messages, a
two-way protocol has to be established. The communication guar-
antees listed above guarantees only that there is no way that P
could have received, and acted on m2, without first having received
and acted on m1.

Of course acted on m1 before m2 here should be understood in
a wide sense; it could mean to ignore m1, i.e., not extracting it from
the mailbox until m2 is extracted first, using a “selective” receive
statement.

2.2 Multi-Party Communication
In the case of intra-node communication even stronger assumptions
about communication patterns can be valid. In Claessen and Svens-
son [CS05] an example is given where three processes P1, P2 and
P3 communicate as follows:
• P1 sends message m1 to P2

• P1 sends message m2 to P3

• P3 forwards message m2 to P2

In the case when all processes are located on the same node,
message m1 is going to be delivered to P2 before m2 is, as a
message can essentially just be stuffed into its mailbox by the
runtime system upon the send by P1. In other words, in the intra-
node case an application protocol might be right to assume that
there is no chance that m2 is going to be delivered before m1,
however it is a risky assumption to rely on for future versions of
Erlang/OTP2.

3. Inter-Node Programming
When an Erlang application is composed of processes situated on
different nodes, the situation is very different from the single node
case. There is no longer a single unique runtime system, that con-
ceptually has all the information needed to make an informed de-
cisions whether a process has crashed. In a distributed, multi-node
application, nodes may be geographically remote from each other
and there is in general no way to distinguish whether a communica-
tion failure regarding a remote process (on a different node) is due
to; (1) that its node is temporarily isolated (for example because of
a network failure) from the sending node, or (2) because the run-
time system at the remote node has crashed, and therefore all the
processes on the remote node has terminated as well. To identify,
possibly erroneously, failed nodes the Erlang runtime system regu-
larly sends messages between nodes (ticks). If on a node N1 a tick

2 There is a conjecture that an interaction with garbage collection could ren-
der the assumption invalid even for the current Erlang/OTP implementation;
we have not observed such a case in practise.

fails to arrive from a node N2, that node is considered crashed and
process on N1 that have linked or monitored to a process on N2

will get an error indication. However, the possibility exists that the
communication failure is only temporary, i.e. not due to a remote
node crash, and that the communication can be reestablished with
the remote node in the future.

Even though the implementation of communication in the dis-
tributed case is very different from the intra-node case, Erlang
promises that communication is not different. Quoting from the
(old) Concurrent Programming in Erlang book:

Messages can be sent to remote processes and links can be
created between local and remote processes just as if the
processes were executing on a local node. Another property
of remote Pids is that sending messages to a remote process
is syntactically and semantically identical to sending to a
local process. This means, for example, that messages to
remote process are always delivered in the same order they
were sent, never corrupted and never lost.

4. Pitfalls of Inter-Node Programming
To revise the distributed semantics of Erlang we set out to perform a
number of experiments to check to which extent the vague promise
regarding the non-difference between intra and inter-node program-
ming actually holds.

To summarize the findings, two new significant differences were
encountered, both breaking the basic communication guarantee in
the intra-node case (streaming guarantee). It turns out that there
are situations when some messages may be lost, but later messages
not. That is, a process Q that sends in sequence two messages m1

and m2 to a remote node P may find that only message m2 was
delivered, never m1. The first problem stems from too early reuse
of process identifiers (pids), as in between the sending m1 the node
on which process P is executing may crash, eventually restart, and
when message m2 is sent it may then be delivered to a new process
spawned on the newly restarted node.

The second situation concerns temporary communication prob-
lems between two nodes, leading to an erroneous detection of nodes
as crashed, which can cause messages sent to be silently dropped.

In this section we also comment on a couple of other peculiar-
ities of distributed communication (pitfall 3 and pitfall 4) that can
lead to application errors if not taken into account.

4.1 Pitfall 1: Pid Reuse
Process identifiers, are normally thought of as globally unique.
However, they also consists of finite structures, and can therefore
not be unique at all times. Using sufficiently large finite structures,
however, it should be unnecessary for practical purposes to con-
sider the risk of process identifier reuse.

Thus it was as a big surprise to see just how easy it was to create
processes with the same pid, after node crashes. In the following
example, we spawn a process, make sure that it is dead, and then
successfully communicate with it!

To run the example we use a simple shell-script in Fig. 1 that
restarts an Erlang-node whenever it is killed.

The example, which is shown in Fig. 2, works as follows; First
we spawn a process on one node (N1) which sets up the experiment,
executing the function run. We assume that node N2 has already
been started using the shell script in Fig 1. The process at node
N1 begins by trapping exits and then executes three times in row
the following sequence of instructions: create and link to a process
executing a terminating function at node N2, then kill node N2
(using the halt command), wait 2 seconds (to permit a restart of
N2). Having spawned three processes, whose pids have been stored
in the Pid variable we next wait for three exit-messages to make

38

#!/bin/sh
NODE=$1

while [1 -lt 2]; do
erl -sname $NODE
sleep 1

done

Figure 1. Code example: Node restart script

-module(pidReuse).

-export([start/0,run/0,echo/0,communicator/1]).

-define(N1,’n1@localhost’).
-define(N2,’n2@localhost’).

start() ->
spawn(?N1,?MODULE,run,[]).

run() ->
erlang:process_flag(trap_exit,true),
Pids =

lists:map
(fun(N) ->

Pid1 = spawn_link(?N2,erlang,self,[]),
spawn(?N2,erlang,halt,[]),
timer:sleep(2000),
Pid1

end, lists:seq(1,3)),
lists:foreach(fun(Pid) ->

receive {’EXIT’,Pid,_} -> ok end
end,Pids),

spawn(?N2,?MODULE,echo,[]),
communicator(Pids).

echo() ->
receive {From,N} -> From!{self(),(N+1)} end.

communicator(Pids) ->
lists:foreach(fun(Pid) ->

io:format("Trying to communicate with: ~w\n(~w)\n",
[Pid,term_to_binary(Pid)]),

Pid!{self(),5},
receive {Pid2,N} ->

io:format("Recieved ~w from ~w\n(~w)\n",
[N,Pid2,term_to_binary(Pid2)])

after 2000 ->
io:format("No reply!\n")

end
end, Pids).

Figure 2. Code Example: Pid reuse

sure that all spawned processes spawned at (the different instances
of) N2 are actually dead. Finally we spawn yet another process at
N2 which executes the function echo and then we call the function
communicator at N1 giving the three collected pids as argument.
The communicator function tries to communicate with the dead
processes, and as we can see from the execution log in Fig. 3 we do
indeed get a reply from one of the processes! Apparently the new
process executing echo at N2 was spawned with the same process
identifier as a process spawned on an earlier instance of N2.

4.1.1 Analysis
Apparently pids are reused very quickly indeed after node crashes
and restarts. Clearly it is not safe to use pid equality, when commu-
nicating with remote processes, to identify uniquely another pro-

Trying to communicate with: <4888.40.0>
(<<131,103,100,0,12,...,49,49,56,0,0,0,40,0,0,0,0,3>>)
Recieved 6 from <4888.40.0>
(<<131,103,100,0,12,...,49,49,56,0,0,0,40,0,0,0,0,3>>)
Trying to communicate with: <4888.40.0>
(<<131,103,100,0,12,...,49,49,56,0,0,0,40,0,0,0,0,1>>)
No reply!
Trying to communicate with: <4888.40.0>
(<<131,103,100,0,12,...,49,49,56,0,0,0,40,0,0,0,0,2>>)
No reply!

Figure 3. Output: Pid reuse

-module(comm).

-export([start/0,snd/2,rcv/0]).

-define(N1,’n1@host1.domain.com’).
-define(N2,’n2@host2.domain.com’).

start() ->
Pid = spawn(?N1,?MODULE,rcv,[]),
spawn(?N2,?MODULE,snd,[Pid,1]).

rcv() ->
receive

N -> io:format("got ~p~n",[N]), rcv()
end.

snd(Pid,N) ->
Pid!N,
timer:sleep(1000),
snd(Pid,N+1).

Figure 4. Basic Erlang communication

cess. Thus in a distributed protocol one likely has to resort to de-
veloping and using another mechanism to accurately identify com-
municating partners such as e.g., adding an instance counter to ev-
ery message, that is safely increased during every node restart (a
standard mechanism anyway in many distributed protocols).

One should note that it is not a coincidence that we used exactly
three processes in the example above. Internally in the nodes there
is an incarnation counter taking the values 1,2 and 3 and after three
restarts it has wrapped.

To prevent problems, we consider it highly advisable that the
current Erlang/OTP implementation is changed to prevent pids
from being reused so soon (having a larger space in the pid structure
for the node restart counter).

4.2 Pitfall 2: Misunderstood Basic Communication
Guarantees under Distribution

In the second example we focus on the commonly held belief
that the communication channels provided between two Erlang
processes cannot silently loose messages, and show that it doesn’t
hold if two nodes can be disconnected from each other, and later
reconnected.

The problem is illustrated by the following simple Erlang pro-
gram, depicted in Fig 4. The program spawns a process repeatedly
sending increasing natural numbers, located at node N1, and a re-
ceiving process that simply prints the stream of incoming numbers
located on node N2.

A log of the information printed by the receiving process in a
typical run is included in Fig 5.

In the log we can see that the number increase in the expected
fashion until the jump between 74 and 146, signifying that a num-

39

...
got 71
got 72
got 73
got 74
got 146
got 147
got 148
...

Figure 5. Output: Process Communication

ber of messages were lost, clearly breaking the property of no
message loss. What caused this to happen? Concretely we simply
yanked the Ethernet cable connecting one of the nodes, and waited
for a short interval, until replugging the cable. The operation is time
sensitive, if we wait too short an interval until replugging there is
no message loss (corresponding to the frequency of sending tick
messages 3).

Apparently we cannot rely on the normal TCP/IP channel se-
mantics of message passing when node communication failures
takes place. The conclusion is that when building distributed algo-
rithms on top of a distributed Erlang channel we have to assume that
messages can be silent dropped, or, we have to introduce code that
monitors every process-to-process communication to detect possi-
bly node communication failures (see examples further on in the
article).

From studying further the Erlang literature we can see that the
phenomenon is actually acknowledged in Barklund and Virdings
carefully written natural language semantics for Erlang [BV99].
We quote:

10.6.2. Order of signals
. . . It is guaranteed that if a process P1 dispatches two sig-
nals s1 and s2 to the same process P2, in that order, then
signal s1 will never arrive after s2 at P2. It is ensured that
whenever possible, a signal dispatched to a process should
eventually arrive at it. There are situations when it is not rea-
sonable to require that all signals arrive at their destination,
in particular when a signal is sent to a process on a different
node and communication between the nodes is temporarily
lost.

Note that in this context a message is a signal instance. In other
words, there are no promises regarding safe delivery of signals (ex-
cept no reordering), especially during temporary communication
failures.

4.2.1 Analysis
For building reliable applications that can be distributed there
seems to be only a few options, considering the failure to enforce
the TCP channel semantics for distributed communication:

• Construct only applications whose protocols for distributed pro-
cess communication are insensitive to dropped messages. This
requirement is easy to satisfy if we can afford to send along the
whole protocol state in all communication but in practice this
will often be too expensive in terms of message traffic/time.
An alternative is to to add sequence counters messages to all
messages and drop (or postpone delivery) messages that arrive
out-of-order. In addition resending of messages has to be im-
plemented. In other words, implementing in the application a
protocol with TCP characteristics on top of the Erlang distribu-
tion mechanism.

3 see Erlang documentation for setting net ticktime

• Instrument the protocol to assume an irrecoverable communi-
cation failure every time a inter-node communication failure
(may) have taken place. Such failures can be detected by using
the link or the monitor mechanism to always link or monitor re-
mote communicating processes. When such a failure has taken
place, no more messages arriving from the remote process can
be trusted, as there may be messages missing. That is, we forbid
further communication with the suspect process.

Alternatively, and more speculatively, one could require that the
Erlang distribution mechanism change:

• Implement a proper Erlang transmission protocol, with com-
munication guarantees similar to TCP, but which can recover
(by keeping information about sending and reception sequence
numbers, and messages sent but not yet acknowledged) from
TCP channel failures. That is, whenever a TCP channel is bro-
ken down, and another one is created between two nodes, the
nodes remember which messages have been sent, and which
have not yet been received, so that the sending node can resend
them. In other words, implementing in the Erlang runtime sys-
tem a distribution protocol with TCP characteristics replacing
the normal Erlang distribution protocol.

• Forbid reconnection of separated nodes. Simply never allow
two nodes that have been previously connected, and later sepa-
rated, from ever reconnecting. In essence, this forces one of the
nodes to restart. This may appear overly brutal, but for some
applications it would be a useful behavior.

4.2.2 A Revised Message Passing Guarantee
Note that we can rephrase the streaming guarantee from Sect. 2.1 if
we let Q monitor the state of the receiving process P , either using
a link or a monitor construct:

If two messages m1 and m2 are sent, in order, from a process
Q to a process P , and Q is linked (or monitors) to P , and no exit
message from P is received at Q4, then it is guaranteed that the
messages have been delivered, in order, at P .

In case an exit message from P is received at Q, any of the
following sequences of messages may have been delivered at P : ǫ,
〈m1〉, 〈m2〉, 〈m1, m2〉.

4.3 Pitfall 3: Weaker Multi-Party Communication
Guarantees

In Sect. 2.2 we saw that multi-party communication in the intra-
node case is rather deterministic, with regards to message order-
ings. As is well known, in the inter-node communication case this
is not so.

• P1 sends message m1 to P2

• P1 sends message m2 to P3

• P3 forwards message m2 to P2

If, in the above example, all three processes reside on different
nodes there exists the possibility that message m2 will be delivered
to process P2 before message m1 is delivered.

Interestingly, in the current Erlang implementation it appears
that the stronger communication guarantee concerning guaranteed
delivery of m1 before m2 still holds if the processes P2 and P3

(or P1 and P3, or P1 and P2) are located on the same node.
This is because Erlang uses essentially, a single stream for all
communication between a pair of nodes (instead of creating a
dedicated stream for each couple of processes communicating over

4 How long to wait for the reception of an exit message depends on the
setting of net ticktime.

40

the node barrier). Thus when m1 is sent to P2 in the above example
it will always be handled and delivered to P2 before m2 (unless
there is a network disconnect as discussed earlier!) since m1 and
m2 are sent on the same stream and thus serialised in the order of
m1 before m2. Note that it is highly dubious to let an application
rely on this obscure guarantee, as one could imagine that a re-
implementation of the Erlang distribution mechanism could change
this behavioral characteristic

4.4 Pitfall 4: Failure Detectors are not Perfect
In the intra-node case whenever a process has died, linked or mon-
itoring processes will be informed of that fact. Since all processes
execute within the same runtime system, the detection of a termi-
nated process is of course perfect. In other words, a process re-
ported terminated will never reappear.

In the inter-node case, when one process monitors (or links to) a
process on another node, the remote process may be reported dead
while it is indeed still alive. This happens for instance when two
nodes are separated (the network tick algorithm times out), causing
remote monitored or linked processes to be reported dead. How-
ever, if the connection between the nodes are later reestablished,
these remote processes can continue communicating.

Again, if re-connections between separated nodes are allowed,
failure detectors can never be perfect as in general there is no pos-
sibility to distinguish a failed network link (which can be reestab-
lished) from a failed node (which cannot).

5. A Programming Discipline for Distributed
Applications

From the communication example in Figs. 4 and 5 it is clear that
when trusted communication is needed we must we must supervise
the communicating processes. There are no special built-in mech-
anisms for doing exactly this, but instead we have to rely on the
general mechanisms link and monitor and build our own program-
ming discipline. In this section we present one simplistic such pro-
gramming discipline, to illustrate our point. We also present some
speculative possible additions to the distributed mechanisms in Er-
lang, that could make writing robust distributed applications easier.

5.1 A Simple Programming Discipline
In the revised example in Fig. 6 we have added some extra code to
make sure that messages are not lost. (Note: There are a gazillion of
other things that can go wrong, this example only deals with com-
munication errors). In this example the sending process is moni-
toring the receiving process. As soon as the sender gets an error
it stops sending messages and instead goes into ’synchronization
mode’. The sender continue to monitor the receiver, and eventu-
ally (in the case of a node disconnect and reconnect) the receiver
will re-appear. The two processes then synchronize, which involves
transmitting the state of the receiver at the time of the network dis-
connect to the sender. The sender then continues from the point
where the connection broke down. There are a few drawbacks with
this simplistic approach (such as the the semi busy-wait loop, and
the fact that the sender must cache everything it has sent), and more
intricate schemes are certainly possible. However, it does illustrate
our point, and in Fig. 7 we see the output from an example run. We
see that although there is a communication failure in the middle,
the sequence is not broken.

5.2 Possible Extensions to Erlang
Having seen all the potential trouble caused by distributed pro-
grams so far, it is interesting to do some speculation about possible
additions to the Erlang runtime system. Such changes could take
place at several levels. One possibility is to add a new Erlang API

-module(commFixed).

-export([init/0,rcv/1,snd/2,sync/1]).

-define(N1,’n1@host1.domain.com’).
-define(N2,’n2@host2.domain.com’).

init() ->
Rcv = spawn(?N2,?MODULE,rcv,[none]),
spawn(?N1,?MODULE,snd,[Rcv,1]).

rcv(N) ->
receive

{sync,Snd} ->
Snd ! {sync,N},
N1 = N;

X ->
io:format("got ~p\n",[X]),
N1 = X

end,
rcv(N1).

snd(Rcv,N) ->
erlang:monitor(process,Rcv),
snd_(Rcv,N).

snd_(Rcv,N) ->
receive

{’DOWN’,_,_,_,noconnection} ->
N = sync(Rcv)

after 1000 ->
ok

end,
Rcv ! N,
snd_(Rcv,N+1).

sync(Rcv) ->
erlang:monitor(process,Rcv),
Rcv ! {sync,self()},
receive

{’DOWN’,_,_,_,noconnection} ->
timer:sleep(5000),
sync(Rcv);

{sync,N} ->
snd_(Rcv,N+1)

end.

Figure 6. Basic Erlang communication – With monitor

...
got 71
got 72
=ERROR REPORT==== 4-Jul-2007::15:14:06 ===
** Node ’n2@host2.domain.com’ not responding **
** Removing (timedout) connection **
got 73
got 74
...

Figure 7. Output: Process Communication – With monitor

that provided explicit control of the handling of node reconnect,
offering the possibility to forbid such reconnects or to permit them
(possibly after informing and preparing local node processes of that
fact).

Another alternative is to extend the information provided to in-
dividual processes communicating with remote nodes. A very com-
monly used OTP-construction (in non-distributed systems) is a su-
pervisor structure. It would be very nice to have something simi-

41

lar for process-structures distributed over several runtime systems.
There are however several options on how such a thing should
work. One plausible idea would perhaps be to have a node su-
pervisor structure built using links and monitors, where different
actions could be specified depending on the event (Connection of
nodes, Disconnection, Re-connection, etc). The main problem with
this is how to guarantee that these node supervisors are the first
that starts/stops communicating when an event occur. Another idea
would be to have one single node-supervisor at each node, to which
process could register. In this case a process that is communicating
with a process at a different node could register this at the node-
supervisor together with a suitable action to take if errors occur.
(Where suitable actions could be: crash, restart, ignore or inform).

A less intrusive addition to the Erlang API would be to inform
not only of nodes going down (nodedown messages emitted by the
monitor node function) but also report re-connected (or restarted)
nodes, i.e., let monitor node emit also nodeup messages.

6. Conclusions
In the paper we have presented the results of some experimental
work aimed to get a better understanding of the distributed func-
tionality of Erlang. In our work with a model checker for Erlang
(McErlang [FE06, FS07]) and our work with a more accurate se-
mantics for distributed Erlang [SF07] we found some cases where
we could not, short of writing experimental code, find out how the
runtime system was working. The result was that we found two in-
teresting significant differences between the vague promises of the
documentation and the actual working of the runtime system; (1)
the reuse of Pids and (2) silently dropped messages in the case of
node disconnect and later reconnect.

The reuse of pids is maybe more of a technical remark, although
it could have severe implications if a critical system is built that rely
on pid uniqueness. To prevent problems, we consider it advisable
that the current Erlang/OTP implementation is changed to prevent
pids from being reused so soon (having a larger space in the pid
structure for the node restart counter).

The often misunderstood guarantees regarding distributed com-
munication is a more problematic issue. The whole problem stems
from the more general (and notoriously hard) problem of handling
network partitioning. Therefore we have tried to give some guide-
lines of how to deal with the situation in a safe way, as well as
speculated about possible changes/additions to Erlang that could
make handling the situation easier.

The final message is that, although most applications are not
affected by these problematic issues, their implication should con-
sidered in most distributed application development. It may very
well be that the correct decision is to not include any new code
handling e.g., pid reuse etc, as the application protocol may not be
sensitive to such problems. However, it is crucially important that
the decision is an informed one.

Acknowledgement
Thanks are due to Joe Armstrong for his valuable comments on a
draft of this paper.

References
[BV99] J. Barklund and R. Virding. Erlang 4.7.3 reference manual. Draft

(0.7), Ericsson Computer Science Laboratory, 1999.
[CS05] K. Claessen and H. Svensson. A semantics for distributed Erlang.

In Proceedings of the ACM SIPGLAN 2005 Erlang Workshop,
2005.

[FE06] L-Å. Fredlund and C. Benac Earle. Model checking Erlang
programs: The functional approach. In Proceedings of the ACM
SIPGLAN 2006 Erlang Workshop, 2006.

[FS07] L-Å. Fredlund and H. Svensson. McErlang: A model checker
for a distributed functional programming language. In Proc. of
International Conference on Functional Programming (ICFP).
ACM SIGPLAN, 2007.

[SF07] H. Svensson and L-Å. Fredlund. A more accurate semantics for
distributed Erlang. In Proceedings of the ACM SIPGLAN 2007
Erlang Workshop, 2007.

42

