How to think like a computer scientist

Allen B. Downey and Jeffrey Elkner

[llustrations by John Dewey

How to think like a computer scientist
Python Version, First Edition

Copyright (C) 2001 Allen B. Downey, Jeffrey Elkner, and John Dewey

This book is an Open Source Textbook (OST). Permission is granted to
copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by the Free
Software Foundation; with the Invariant Sections being ” Contributor List”, with
no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is
included in the section entitled ”GNU Free Documentation License”.

The original form of this book is LaTeX source code. Compiling this LaTeX
source has the effect of generating a device-independent representation of a
textbook, which can be converted to other formats and printed.

The GNU Free Documentation License is available from www.gnu.org or by
writing to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

The LaTeX source for this book, and more information about the Open
Source Textbook project, is available from

http://rocky.wellesley.edu/downey/ost

http://www.ibiblio.org/obp

or by writing to Allen B. Downey, Computer Science Dept, Wellesley College,
Wellesley, MA 02482.

This book was typeset by the authors using LaTeX and LyX, which are both
free, open-source programs.

Tlustrations by John Dewey
Copyright (C) 2001 John Dewey

Contributor List

by Jeffrey Elkner

Perhaps the most exciting thing about a free content textbook is the pos-
sibility it creates for those using the book to collaborate in its development. I
have been delighted by the many responses, suggestions, corrections, and words
of encouragement I have received from people who have found this book to be
useful, and who have taken the time to let me know about it.

Unfortunately, as a busy high school teacher who is working on this project
in my spare time (what little there is of it ;-), I have been neglectful in giving
credit to those who have helped with the book. I always planned to add an
” Acknowlegdements” sections upon completion of the first stable version of the
book, but as time went on it became increasingly difficult to even track those
who had contributed.

Upon seeing the most recent version of Tony Kuphaldt’s wonderful free text,
”Lessons in Electric Circuits”, I got the idea from him to create an ongoing
” Contributor List” page which could be easily modified to include contributors
as they come in.

My only regret is that many earlier contributors might be left out. I will
begin as soon as possible to go back through old emails to search out the many
wonderful folks who have helped me in this endeavour. In the mean time, if you
find yourself missing from this list, please except my humble apologies and drop
me an email letting me know about my oversight.

And so, without further delay, here is a listing of the contributors:

Fred Bremmer Fred submitted a correction in section 2.1. He can be reached
at: Fred.Bremmer@Qubc.cu

Jonah Cohen Jonah wrote the Perl scripts to convert the LaTeX source for
this book into beautiful html. His web page is jonah.ticalc.org and his
email is JonahCohen@aol.com

Courtney Gleason Courtney and Katherine Smith created the first version
of horsebet.py, which is used as the case study for the last chapters of
the book. Courtney can be reached at: orion15580a0l.com

Lee Harr Lee submitted corrections for sections 10.1 and 11.5. He can be
reached at: missive@linuxfreemail.com

ii CONTRIBUTOR LIST

James Kaylin James is a student using the text. He has submitted numerous
corrections. James can be reached by email at: Jamarf@aol.com

Eddie Lam Eddie has sent in numerous corrections to chapters 1, 2, and 3.
He also fixed the Makefile so that it creates an index the first time it is
run. Eddie can be reached at: epl@cs.monash.edu.au

Man-Yong Lee Man-Yong sent in a correction to the example code in section
2.4. He can be reaced at: yong@linuxkorea.co.kr

Kevin Parks Kevin sent in valuable comments and suggestions as to how
to improve the distribution of the book. He can be reached at:
cpsoct@lycos.com

Katherine Smith Katherine and Courtney Gleason created the first version
of horsebet.py, which is used as the case study for the last chapters of
the book. Katherine can be reached at: kss_0326@yahoo.com

Craig T. Snydal Craig is testing the text in a course at Drew University. He
has contributed several valuable suggestions and corrections, and can be
reached at: csnydal@drew.edu

Ian Thomas Ian and his students are using the text in a programming course.
They are the first ones to test out the chapters in the latter half of the
book, and they have make numerous corrections and suggestions. Ian can
be reached at: ithomas@sd70.bc.ca

Keith Verheyden Keith made correction in Section 3.11 and can be reached
at: kverheyd@glam.ac.uk

Moshe Zadka Moshe has made invaluable contributions to this project. In ad-
dition to writing the first draft of the chapter on Dictionaries, he provided
continual guidance in the early stages of the book. He can be reached at:
moshez@math.huji.ac.il

Contents

Contributor List

1 The way of the program

2

1.1 The Python programming language
1.2 What isaprogram?
1.3 What is debugging? L.
1.4 Formal and natural languages
1.5 Thefirst program oo
1.6 Glossary e
Variables, expressions, and statements

2.1 Values
2.2 Variables. Lo
2.3 Variable names and keywords
2.4 Printing variables oo oL
2.5 Operators and expressions
2.6 Orderof operations
2.7 Operationson strings
2.8 CompoSitiono
2.9 Commentso
210 GlOSSATY . .« « v v i e e e e e e e e e e e e
Functions

3.1 Function calls oo
3.2 Typeconversion.
3.3 Typecoercion e
34 Mathfunctions
3.5 Composition L
3.6 Adding new functions,
3.7 Definitionsanduseo
3.8 Flowofexecution
3.9 Parameters and arguments L.
3.10 Variables and parameters are local
3.11 Stack diagrams

iii

iv

3.12 Functions with results

3.13

Conditionals and recursion

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Glossary

The modulus operator
Conditional execution

Compound Statements
Alternative execution
Multiple Branches

Nested conditionals
The return statement
Recursion
Infinite recursion
Stack diagrams for recursive functions
Keyboard input
Glossary

Fruitful functions

5.1 Return values

5.2 Program development

5.3 Composition
5.4

5.5 Boolean functions

5.6 More recursion

5.7 Leap of faith

5.8 One more example

5.9 Checking types

510 Glossary
Iteration

6.1 Multiple assignment

6.2 Tteration
6.3 The while statement

6.4 Tables
6.5 Two-dimensional tables

6.6 Encapsulation and generalization
6.7 More encapsulation

6.8 Local variables

6.9 More generalization

6.10 Functions
6.11 Glossary

Boolean expressions and logical operators

CONTENTS

CONTENTS

7 Strings
71 A compounddatatype
7.2 Length
7.3 Traversal and the forloop.
74 Slicing e e
7.5 stringcomparison oL
7.6 stringsarenot mutable
77 Afindfunction. L.
7.8 Looping and counting,
79 Thestringmodule
7.10 Character classification oL
711 GloSsary oo i e e e e
8 Lists
8.1 List values o
8.2 Accessingelements L.
83 Listlength
84 Listsand forloops
85 Listoperations
8.6 Slices o o e
8.7 Objectsand values
88 Aliasing
89 Cloning lists
8.10 List parameters oo
811 Nestedlists
812 Glossaryo e e e e
9 Histograms
9.1 Randomnumbers
9.2 Statistics. L
9.3 List of random numbers
94 Counting
9.5 Manybuckets
9.6 Asinglepasssolution. L.
9.7 Glossary
10 Tuples and dictionaries
10.1 Mutability and tuples L.
10.2 Multiple assignmento Lo L.
10.3 Tuplesasreturnvalues
10.4 Dictionaries e
10.5 Dictionary operations. L.
10.6 Dictionary methods
10.7 Aliasing and copyingo
10.8 Sparse matricesl o e
109 Hints o e

vi CONTENTS
10.10 Longintegerso 96
10.11 Counting letters L. 97
10.12 Glossary v v v v e e e e e 98

11 Classes and objects 99
11.1 User-defined compound types 99
11.2 Instance variables 100
11.3 Instances as parameters 101
114 Rectangles 101
11.5 Instances asreturnvalues 102
116 Glossary o v v i e e e 102

12 Classes and functions 105
121 Time . . . o 0 o e e e e e 105
122 Purefunctions. oL 106
12.3 Modifiers 107
12.4 Which is better? oo 108
12.5 Incremental development versus planning 108
12.6 Generalization oL o Lo 109
127 Algorithms 110
128 Glossary o o 110

13 Methods 113
13.1 Object-oriented features 113
13.2 printTime.o 114
13.3 Another example 0. 115
13.4 A more complicated example, 115
13.5 Optional arguments 116
13.6 The initialization method 117
137 Glossary e 118

14 The case study 119
14.1 horsebet.py 119
142 Glossary o ..o 124

A GNU Free Documentation License 125
A.1 Applicability and Definitions, 126
A2 Verbatim Copying 127
A3 Copyingin Quantity 127
A4 Modifications Lo 128
A5 Combining Documents 129
A6 Collections of Documents 130
A7 Aggregation With Independent Works 130
A8 Translation 131
A9 Termination 131

A10

Future Revesions of This Licence 131

Chapter 1

The way of the program

The goal of this book, and this class, is to teach you to think like a computer
scientist. This way of thinking combines some of the best features of Math-
ematics, Engineering, and Natural Science. Like mathematicians, computer
scientists use formal languages to denote ideas (specifically computations). Like
engineers, they design things, assembling components into systems and evalu-
ating tradeoffs among alternatives. Like scientists, they observe the behavior of
complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem-solving.
Problem-solving means the ability to formulate problems, think creatively about
solutions, and express a solution clearly and accurately. As it turns out, the
process of learning to program is an excellent opportunity to practice problem-
solving skills. That’s why this chapter is called “The way of the program.”

On one level, you will be learning to program, which is a useful skill by itself.
On another level you will use programming as a means to an end. As we go
along, that end will become clearer.

1.1 The Python programming language

The programming language you will be learning is Python. Python is an exam-
ple of a high-level language; other high-level languages you might have heard
of are C, C++, Perl and Java.

As you might infer from the name “high-level language,” there are also
low-level languages, sometimes referred to as machine language or assembly
language. Loosely-speaking, computers can only execute programs written in
low-level languages. Thus, programs written in a high-level language have to
be translated before they can run. This translation takes some time, which is a
small disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in
a high-level language; programs written in a high-level language take less time
to write, they are shorter and easier to read, and they are more likely to be

1

2 CHAPTER 1. THE WAY OF THE PROGRAM

correct. Secondly, high-level languages are portable, meaning that they can
run on different kinds of computers with few or no modifications. Low-level
programs can only run on one kind of computer, and have to be rewritten to
run on another.

Due to these advantages, almost all programs are written in high-level lan-
guages. Low-level languages are only used for a few specialized applications.

There are two kinds of programs that translate high-level languages into
low-level languages: interpreters and compilers. An interpreter reads a high-
level program and executes it, meaning that it does what the program says. It
translates the program a little at a time, alternately reading lines and carrying
out commands.

I | lmerpra e - Final Chuipu

ored o rask
SR O 18 e

Thia Iraorg rator e e thia
T oode

A compiler reads the program and translates it all at once, before executing
any of the commands. Often you compile the program as a separate step, and
then execute the compiled code later. In this case, the high-level program is
called the source code, and the translated program is called the object code
or the executable.

Inpui - L et = | CPyecr Code | e E el - LUT T

| T — md gEnaress Wom ovor e L progears mididi wwdd appaa

b sinmie pbe aby e ook [S T L= | i @i T

Python is considered an interpreted language because Python programs
are executed by an interpreter. There are two ways to use the interpreter:
command-line mode and script mode. In command-line mode, you type Python
statements and the interpreter prints the result.

$ python

Python 1.5.2 (#1, Feb 1 2000, 16:32:16)

Copyright 1991-1995 Stichting Mathematish Centrum, Amsterdam
>>> print 1 + 1

2

The first line of this example is the command that starts the Python inter-
preter. The next two lines are messages from the interpreter. The third line
starts with >>>, which is the prompt the interpreter uses to indicate that it is
ready. We typed 1+1 and the interpreter replied 2.

1.2. WHAT IS A PROGRAM? 3

Alternatively, we can write a program in a file and use the interpreter to
execute the contents of the file. Such a file is called a script. For example, we
used a text editor to create a file named latoya.py with the following contents:

print 1 + 1

By convention, files that contain Python programs have names that end with
.Py-

To execute the program, you have to tell the interpreter the name of the
script.

$ python latoya.py
2

In other development environments, the details of executing programs may
differ. Also, most programs are more interesting than this one.

Most of the examples in this book are executed on the command line. Work-
ing on the command line is convenient for program development and testing,
since you can type Python statements and execute them immediately. Once you
have a working program, you will want to store it in a script so you can execute
or modify it in the future.

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, like solving a
system of equations or finding the roots of a polynomial, but it can also be
a symbolic computation, like searching and replacing text in a document or
(strangely enough) compiling a program.

The instructions (or commands, or statements) look different in different
programming languages, but there are a few basic functions that appear in just
about every language:

input: Get data from the keyboard, or a file, or some other device.
output: Display data on the screen or send data to a file or other device.
math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and execute the appro-
priate sequence of statements.

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve
ever used, no matter how complicated, is made up of instructions that look
more or less like these. Thus, one way to describe programming is the process
of breaking a large, complex task up into smaller and smaller subtasks until

4 CHAPTER 1. THE WAY OF THE PROGRAM

eventually the subtasks are simple enough to be performed with one of these
simple instructions.

That may be a little vague, but we will come back to this topic later when
we talk about algorithms.

1.3 What is debugging?

Programming is a complex process, and since it is done by human beings, it often
leads to errors. For whimsical reasons, programming errors are called bugs and
the process of tracking them down and correcting them is called debugging.
There are three kinds of errors that can occur in a program. It is useful to
distinguish between them in order to track them down more quickly.

1.3.1 Syntax errors

Python can only execute a program if the program is syntactically correct;
otherwise, the process fails and returns an error message. Syntax refers to the
structure of your program and the rules about that structure. For example, in
English, a sentence must begin with a capital letter and end with a period. this
sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is
why we can read the poetry of e e cummings without spewing error messages.
Python is not so forgiving. If there is a single syntax error anywhere in your
program, Python will print an error message and quit, and you will not be able
to run your program. During the first few weeks of your programming career,
you will probably spend a lot of time tracking down syntax errors. As you gain
experience, though, you will make fewer errors and find them faster.

1.3.2 Run-time errors

The second type of error is a run-time error, so-called because the error does
not appear until you run the program. These errors are also called excep-
tions because they usually indicate that something exceptional (and bad) has
happened.

For the simple sorts of programs we will be writing for the next few weeks,
run-time errors are rare, so it might be a little while before you encounter one.

1.3.3 Logic errors

The third type of error is the logical or semantic error. If there is a logical
error in your program, it will run successfully, in the sense that the computer
will not generate any error messages, but it will not do the right thing. It will
do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted
to write. The meaning of the program (its semantics) is wrong. Identifying

1.4. FORMAL AND NATURAL LANGUAGES 5

logical errors can be tricky, since it requires you to work backwards by looking
at the output of the program and trying to figure out what it is doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire in this class is debugging.
Although it can be frustrating, debugging is one of the most intellectually rich,
challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with
clues and you have to infer the processes and events that lead to the results you
see.

Debugging is also like an experimental science. Once you have an idea what
is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modification, and you take
a step closer to a working program. If your hypothesis was wrong, you have to
come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth.” (from A. Conan Doyle’s The Sign of Four).

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does what
you want. The idea is that you should always start with a working program
that does something, and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines
of code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing AAAA and BBBB.
This later evolved to Linux” (from The Linux Users’ Guide Beta Version 1).

Later chapters will make more suggestions about debugging and other pro-
gramming practices.

1.4 Formal and natural languages

Natural languages are the languages that people speak, like English, Spanish,
and French. They were not designed by people (although people try to impose
some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific
applications. For example, the notation that mathematicians use is a formal
language that is particularly good at denoting relationships among numbers and
symbols. Chemists use a formal language to represent the chemical structure of
molecules. And most importantly:

Programming languages are formal languages that have
been designed to express computations.

6 CHAPTER 1. THE WAY OF THE PROGRAM

Formal languages tend to have strict rules about syntax. For example, 3+3 =
6 is a syntactically correct mathematical statement, but 3 = +69$ is not. Also,
H,0 is a syntactically correct chemical name, but 5 Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens
are the basic elements of the language, like words and numbers and chemical
elements. One of the problems with 3=+6$ is that $ is not a legal token in
mathematics (at least as far as I know). Similarly, »Zz is not legal because
there is no element with the abbreviation Zz.

The second type of syntax error pertains to the structure of a statement;
that is, the way the tokens are arranged. The statement 3=+6$ is structurally
illegal, because you can’t have a plus sign immediately after an equals sign.
Similarly, molecular formulas have to have subscripts after the element name,
not before.

As an exercise, create what appears to be a well structured English
sentence with unrecognizable tokens in it. Then write another sen-
tence with all valid tokens but with invalid structure.

When you read a sentence in English or a statement in a formal language,
you have to figure out what the structure of the sentence is (although in a
natural language you do this unconsciously). This process is called parsing.

For example, when you hear the sentence, “The other shoe fell,” you under-
stand that “the other shoe” is the subject and “fell” is the verb. Once you have
parsed a sentence, you can figure out what it means, that is, the semantics of
the sentence. Assuming that you know what a shoe is, and what it means to
fall, you will understand the general implication of this sentence.

Although formal and natural languages have many features in common—
tokens, structure, syntax and semantics—there are many differences.

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstand-
ings, natural languages employ lots of redundancy. As a result, they are
often verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The
other shoe fell,” there is probably no shoe and nothing falling. Formal
languages mean exactly what they say.

People who grow up speaking a natural language (everyone) often have a
hard time adjusting to formal languages. In some ways the difference between
formal and natural language is like the difference between poetry and prose, but
more So:

1.5. THE FIRST PROGRAM 7

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity
is not only common, but often deliberate.

Prose: The literal meaning of words is more important and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry,
but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal lan-
guages). First, remember that formal languages are much more dense than
natural languages, so it takes longer to read them. Also, the structure is very
important, so it is usually not a good idea to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens
and interpreting the structure. Finally, remember that the details matter. Lit-
tle things like spelling errors and bad punctuation, which you can get away with
in natural languages, can make a big difference in a formal language.

1.5 The first program

Traditionally the first program people write in a new language is called “Hello,
World!” because all it does is print the words “Hello, World!” In Python, this
program looks like this:

print "Hello, world!"

Some people judge the quality of a programming language by the simplicity
of the “Hello, World!” program. By this standard, Python does about as well
as can be done.

1.6 Glossary

problem-solving: The process of formulating a problem, finding a solution,
and expressing the solution.

high-level language: A programming language like Python that is designed
to be easy for humans to read and write.

low-level language: A programming language that is designed to be easy for
a computer to execute. Also called “machine language” or “assembly
language.”

portability: A property of a program that can run on more than one kind of
computer.

8 CHAPTER 1. THE WAY OF THE PROGRAM

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program in a high-level language into a low-level lan-
guage, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.
object code: The output of the compiler, after translating the program.
executable: Another name for object code that is ready to be executed.

byte code: A special kind of object code used for Python programs. Byte
code is similar to a low-level language, but it is portable, like a high-level
language.

algorithm: A general process for solving a category of problems.
bug: An error in a program.

debugging: The process of finding and removing any of the three kinds of
€rrors.

syntax: The structure of a program.
semantics: The meaning of a program.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to interpret).

run-time error: An error that does not occur until the program has started
to execute, but that prevents the program from continuing.

logical error: An error in a program that makes it do something other than
what the programmer intended.

formal language: Any of the languages people have designed for specific pur-
poses, like representing mathematical ideas or computer programs. All
programming languages are formal languages.

natural language: Any of the languages people speak that have evolved nat-
urally.

parse: To examine a program and analyze the syntactic structure.

Chapter 2

Variables, expressions, and
statements

2.1 Values

A value is one of the fundamental things — like a letter or a number — that
a program manipulates. The only values we have seen so far are the result of
adding 1 + 1 and the string value, "Hello, World!". You (and the interpreter)
can identify string values because they are enclosed in quotation marks.

There are other kinds of values, including integers and decimal numbers. An
integer is a whole number like 1 or 17. Decimal numbers are numbers that have
a decimal point, like 1.0 or 3.14159. You can output integer and decimal values
the same way you output strings:

>>> print 4

4

>>> print 2.17
2.17

Every value has a type. If you are not sure what type a value has, you can ask
the Python interpreter.

>>> type("Hello, World!")
<type ’string’>

>>> type(17)

<type ’int’>

>>> type(3.2)

<type ’float’>

Not surprisingly, the integer type is called int. The decimal type is called float
because these numbers are represented in a format called floating-point.

9

10 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

The values "17" and "3.2" are strings, because they are enclosed in quo-
tation marks. It doesn’t matter that the contents of the string happen to be
digits.

>>> type("17")

<type ’string’>
>>> type("3.2")
<type ’string’>

When you type a large integer, you might be tempted to use commas between
groups of three digits, as in 1,000,000. This is not a legal integer in Python,
but it is a legal expression.

>>> print 1,000,000
100

Well, that’s not what we expected at all! It turns out that 1,000,000 is a tuple,
something we’ll get to in a few chapters. For now, just remember not to put
commas in your integers.

2.2 Variables

One of the most powerful features of a programming language is the ability to
manipulate variables. A variable is a name that refers to a value.

To create a new variable, you name it and specify the value you want it
to refer to. The statement that does that is called an assignment because it
assigns a value to a variable.

>>> messg = "What’s up, Doc?"
>>> n = 17
>>> pi = 3.14159

This example shows three assignments. The first assigns the value "What’s
up, Doc?" to a new variable named messg. The second gives the value 17 to
n, and the third gives the value 3.14159 to pi.

Just as values have types, so do variables.

>>> type(messg)
<type ’string’>
>>> type(n)
<type ’int’>
>>> type(pi)
<type ’float’>

In each case the type of the variable is the type of the value that is assigned to
it.

2.3. VARIABLE NAMES AND KEYWORDS 11

A common way to represent variables on paper is to draw a box with the
name of the variable on the outside. The box contains an arrow that points
to the value of the variable. This kind of figure is called a state diagram
because it shows what state each of the variables is in (you can think of it
as the variable’s ”state of mind”). This diagram shows the effect of the three
assignment statements above:

s

- W had s up D™

Lk L

2.3 Variable names and keywords

By convention, most variable names in Python contain only lower case letters.
Also, most of the time programmers choose names for their variables that are
meaningful — they document what the variable is used for.

But their are some rules about what is or is not a legal name in Python.

1. Names can be arbitrarily long.

2. Names can contain letters and numbers, but the first character has to be
a letter.

3. Names can contain upper and lower case letters.

Upper and lower case letters are different, so bruce and Bruce are different
variable names. The underscore character, _, is also legal, and is often used to
separate names with multiple words, like my_name or price of tea_in china.

If you try to give a variable an illegal name, you will get a syntax error.

>>> 76trombones = "big parade"
SyntaxError: invalid syntax

>>> more$ = 1000000

SyntaxError: invalid syntax

>>> class = "Computer Science 101"
SyntaxError: invalid syntax

T6trombones is illegal because it does not begin with a letter. more$ is illegal
because it contains an illegal character, the dollar sign. But what’s wrong with
class?

12 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

It turns out that class is one of the Python keywords. Keywords are used
by the language to define its rules and structure, and they can not be used as
variable names.

Python has 28 keywords:

and continue else for import not raise
assert def except from in or return
break del exec global is pass try
class elif finally if lambda print while

You might want to keep this list handy. If the interpreter complains about one
of your variable names, and you don’t know why, see if it is on this list.

2.4 Printing variables

We have already used the print statement to display values; we can also use it
to display the value assigned to a variable.

>>> print messg
What’s up, Doc?
>>> print n

7

>>> print pi
3.14159

The print statement works both on the command line and in scripts. On the
command line there is a more concise option; you can just type the name of the
variable.

>>> messg
"What’s up, Doc?"

In a script, this is a legal statement, but it does not do anything (try it).
The print statement can print multiple values on a single line:

>>> print "The value of pi is", pi
The value of pi is 3.14159

The comma separates the list of values and variables that are printed. Notice
that there is a space between the values.

2.5 Operators and expressions
Operators are special symbols that represent simple computations like addition

and multiplication. The values that the operator uses are called operands.
Many of the of the operators in Python do exactly what you would expect

2.5. OPERATORS AND EXPRESSIONS 13

them to do, because they are common mathematical symbols. For example, the
operator for adding two integers is +.

The following are all legal Python expressions whose meaning is more or less
clear:

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

The symbols +, -, /, and the use of parenthesis for grouping are each used the
same way that they are in mathematics. The * is the symbol for multiplication,
and ** is the symbol for exponentiation.

Expressions can contain variable names as well as values. In each case the
name of the variable is replaced with its value before the computation is per-
formed.

Addition, subtraction, multiplication, and exponentiation all do what you
expect, but you might be surprised by division. For example, the following
program:

hour = 11

minute = 59

print "Number of minutes since midnight: ", hour*60+minute
print "Fraction of the hour that has passed: ", minute/60

would generate the following output:

Number of minutes since midnight: 719
Fraction of the hour that has passed: 0

The first line is what we expected, but the second line is odd. The value of the
variable minute is 59, and 59 divided by 60 is 0.98333, not 0. The reason for
the discrepancy is that Python is performing integer division.

When both of the operands are integers, the result must also be an integer,
and by convention integer division always rounds down, even in cases like this
where the next integer is very close.

A possible alternative in this case is to calculate a percentage rather than a
fraction:

print "Percentage of the hour that has passed: ", minute*100/60
The result is:

Percentage of the hour that has passed: 98
Again the result is rounded down, but at least now the answer is approximately

correct. Another alternative is to use floating-point division, which we will get
to in the next chapter.

14 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

2.6 Order of operations

When more than one operator appears in an expression the order of evaluation
depends on the rules of precedence. Python follows the same precedence rules
for its mathematical operators that mathematics does. The acronym PEM-
DAS is a useful way to remember the order of operations:

e Parenthesis have the highest precedence and can be used to force an ex-
pression to evaluate in the order that you want it to. Since expressions in
parentheses are evaluated first, 2 * (3-1) is 4, and (1+1) **(5-2) is 8.
You can also use parentheses to make an expression easier to read, as in
(minute * 100) / 60, even though it doesn’t change the result.

e Exponentiation has the next highest precedence, so 2**1+1 is 3 and not
4, and 3*1**3 is 3 and not 27.

e Multiplication and Division have the same precedence, which is higher
than Addition and Subtraction, which also have the same precedence. So
2%3-1 yields 5 rather then 4, and 2/3-1 is -1, not 1 (remember that in
integer division 2/3 is 0).

e Operators with the same precedence are evaluated from left to right. So in
the expression minute*100/60, the multiplication happens first, yielding
5900/60, which in turn yields 98. If the operations had gone from right
to left, the result would be 59/1 which is 59, which is wrong.

2.7 Operations on strings

In general you cannot perform mathematical operations on strings, even if the
strings look like numbers. The following are illegal (assuming that messg has
type string)

messg-1 "Hello"/123 messgx"Hello" "15"+2

Interestingly, the + operator does work with strings, although it does not do
exactly what you might expect. For strings, the + operator represents concate-
nation, which means joining up the two operands by linking them end-to-end.
For example,

fruit = "banana"

bakedGood = " nut bread"
dessert = fruit + bakedGood
print dessert

The output of this program is banana nut bread.

The * operator also works on strings; it performs repetition. For example,
’Fun’*3 is FunFunFun’. One of the operands has to be a string; the other has
to be an integer.

2.8. COMPOSITION 15

On one hand, this interpretation of + and * makes sense by analogy with
addition and multiplication. Just as 4#*3 is equivalent to 4+4+4, we expect
"Fun"*3 to be the same as "Fun"+"Fun"+"Fun", and it is. On the other hand,
there is a significant way in which string concatenation and repetition are very
different from integer addition and multiplication.

As an exercise, name a property that addition and multiplcation have
that string concatenation and repetition do not.

2.8 Composition

So far we have looked at the elements of a program — variables, expressions, and
statements—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability
to take small building blocks and compose them. For example, we know how
to add numbers and we know how to print; it turns out we can do both at the
same time:

>>> print 17 + 3
20

Actually, we shouldn’t say “at the same time,” since in reality the addition has
to happen before the printing, but the point is that any expression, involving
numbers, strings, and variables, can be used inside a print statement. We’ve
already seen an example of this:

print "Number of minutes since midnight: ", hour*60+minute

And you can also put arbitrary expressions on the right-hand side of an assign-
ment statement:

percentage = (minute * 100) / 60

This ability may not seem impressive now, but we will see other examples where
composition makes it possible to express complex computations neatly and con-
cisely.

WARNING: There are limits on where you can use certain expressions. For
example, the left-hand side of an assignment statement has to be a wvariable
name, not an expression. So the following is illegal: minute+1 = hour.

2.9 Comments

As programs get bigger and more complicated, they get more difficult to read.
Formal languages are dense and it often difficult to look at a piece of code and
figure out what it is doing, or why.

For this reason it is a good idea to add notes to your programs to explain, in
natural language, what the program is doing. These notes are called comments
and they are marked with the # symbol:

16 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments
at the end of a line:

percentage = (minute * 100) / 60 # caution: integer division

Everything from the # to the end of the line is ignored—it has no effect on the
program. The message is intended for the programmer, or for future program-
mers that might have to use this code. In this case it reminds the reader about
the ever-surprising behavior of integer division.

2.10 Glossary

value: A number or string (or other thing to be named later) that can be stored
in a variable or computed in an expression.

variable: A name that refers to a value.

type: A set of values. The type of a value determines how it can be used in
expressions. So far, the types we have seen are integers (type int), floating
point numbers (type float) and strings (type string).

keyword: A reserved word that is used by the compiler to parse programs.
You cannot use keywords, like if, def and while as variable names.

statement: A line of code that represents a command or action. So far, the
statements we have seen are assignments and print statements.

assignment: A statement that assigns a value to a variable.

comment: A piece of information in a program which is meant for other pro-
grammers (or anyone reading the source code) and which has no effect on
the execution of the program.

state diagram A graphical representation of a set of variables and the values
they refer to.

expression: A combination of variables, operators and values that represents
a single result value.

operator: A special symbol that represents a simple computation like addition,
multiplication or string concatenation.

operand: One of the values on which an operator operates.

integer division: An operation which divides one integer by another and re-
turns an integer. Integer division returns only the whole number of times
that the numerator is divisible by the denominator and discards any re-
mainder.

2.10. GLOSSARY 17

rules of precedence: The set of rules governing the order in which expressions
involving multiple operators and operands will be evaluated.

concatenate: Join two operands end-to-end.

composition: The ability to combine simple expressions and statements into
compound statements and expressions in order to represent complex com-
putations concisely.

18 CHAPTER 2. VARIABLES, EXPRESSIONS, AND STATEMENTS

Chapter 3

Functions

3.1 Function calls

We have already seen one example of a function call:

>>> type("32")
<type ’string’>

The name of the function is type, and it displays the type of a value or variable.
The value or variable, which is called the argument of the function, has to
be enclosed in parentheses. It is common to say that a function ”takes” an
argument and ”returns” a result. The result is called the return value.
Instead of printing the return value, we could assign it to a variable.

>>> betty = type("32")
>>> print betty
<type ’string’>
As another example, the id function takes a value or a variable and returns an

integer that acts as a unique identifier for the value.

>>> i1d(3)
134882108
>>> betty = 3
>>> id(betty)
134882108

Every value has an id. The id of a variable is the id of the value it refers to.

3.2 Type conversion

Python provides a collection of built-in functions that convert values from one
type to another. The int function takes any value and converts it to an integer,
if possible, or complains otherwise:

19

20 CHAPTER 3. FUNCTIONS

>>> int ("32")

32

>>> int("Hello")

ValueError: invalid literal for int(): Hello

int can also convert floating-point values to integer, but remember that it
always rounds down:

>>> int(3.99999)
3

There is also a float function that converts integers and strings:

>>> float(32)

32.0

>>> float("3.14159")
3.14159

Finally, there is the str function, which converts to type string:

>>> str(32)

1327

>>> str(3.14149)
’3.14149°

It may seem odd that Python distinguishes the integer value 1 from the floating-
point value 1.0. They may represent the same number, but they belong to
different types. The reason is that they are represented differently inside the
computer. The details of this representation are not important for now, but
they affect the behavior of some programs.

3.3 Type coercion

Now that we can convert between types, we can solve the problem we had in
the last chapter with integer division. We were trying to calculate the fraction
of an hour that had elapsed. The most obvious expression, minute / 60, does
integer arithmetic, which is not what we want.

One alternative is to convert minute to floating-point and do floating-point
division:

>>> minute = 59
>>> float(minute) / 60.0
0.983333333333

Or we can take advantage of Python’s type coercion. For the mathematical
operators, if either operand is a float, the other is automatically converted to
a float.

3.4. MATH FUNCTIONS 21

>>> minute = 59
>>> minute / 60.0
0.983333333333

By making the denominator a float, we force Python to do floating-point
division.

3.4 Math functions

In mathematics, you have probably seen functions like sin and log, and you
have learned to evaluate expressions like sin(pi/2) and log(1/x). First, you
evaluate the expression in parentheses (the argument). For example, pi/2 is
approximately 1.571, and 1/x is 0.1 (if x happens to be 10.0).

Then you evaluate the function itself, either by looking it up in a table or
by performing various computations. The sin of 1.571 is 1, and the log of 0.1
is -1 (assuming that log indicates the logarithm base 10).

This process can be applied repeatedly to evaluate more complicated expres-
sions like log(1/sin(pi/2)). First we evaluate the argument of the innermost
function, then evaluate the function, and so on.

Python has a math module that provides most of the familiar mathematical
functions. A module is a file that contains a collection of related functions
grouped together.

Before we can use the functions from a module, we have to import them:

import math

To call one of the functions, we have to specify the name of the module and the
name of the function, separated by a dot:

decibel = math.logl0 (17.0)
angle = 1.5
height = math.sin(angle)

The first statement sets jtt;decibelj/tt; to the logarithm of 17, base 10. There
is also a function called log that takes logarithms base e.

The third statement finds the sine of the value of the variable angle. sin and
the other trigonometric functions (cos, tan, etc.) take arguments in radians.
To convert from degrees to radians, you can divide by 360 and multiply by 2*pi.
For example, to find the sine of 45 degrees, first calculate the angle in radians
and then take the sine:

degrees = 45
angle = degrees * 2 * math.pi / 360.0
math.sin(angle)

The constant pi is also part of the math module. If you know your geometry,
you can verify the result by comparing it to the square root of 2 divided by 2:

>>> math.sqrt(2) / 2.0
0.707106781187

22 CHAPTER 3. FUNCTIONS

3.5 Composition

Just as with mathematical functions, Python functions can be composed, mean-
ing that you use one expression as part of another. For example, you can use
any expression as an argument to a function:

X = math.cos(angle + pi/2)

This statement takes the value of jtt;pij/tt;, divides it by two and adds the
result to the value of angle. The sum is then passed as an argument to the cos
function.

You can also take the result of one function and pass it as an argument to
another:

x = math.exp(math.log(10.0))

This statement finds the log base e of 10 and then raises e to that power. The
result gets assigned to x.

3.6 Adding new functions

So far we have only been using the functions that are built into Python, but it
is also possible to add new functions.

In the context of programming a function is a named sequence of statements
that performs a desired operation. This operation is specified in a function
definition. The functions we have been using so far have been defined for us,
and these definitions have been hidden. This is a good thing, because it allows
us to use the functions without worrying about the details of their definitions.

The syntax for a function definition is:

def NAME(LIST OF PARAMETERS):
STATEMENTS

You can make up any name you want for your function, except that you can’t
use a name that is a Python keyword. The list of parameters specifies what
information, if any, you have to provide in order to use the new function.

There can be any number of statements inside the function, but they have
to be indented from the left margin. In the examples in this book, we will use
an indentation of two spaces.

The first couple of functions we are going to write have no parameters, so
the syntax looks like this:

def new_line():
print

3.6. ADDING NEW FUNCTIONS 23

This function is named new_line. The empty parentheses indicate that it has
no parameters. It contains only a single statement, which outputs a newline
character (that’s what happens when you use a print command without any
arguments).

We can call the new function using the same syntax we use for built-in
functions:

print "First Line."
new_line()
print "Second Line."

The output of this program is

First line.

Second line.

Notice the extra space between the two lines. What if we wanted more space
between the lines? We could call the same function repeatedly:

print "First Line."
new_line()
new_line()
new_line()
print "Second Line."

Or we could write a new function, named threeLines, that prints three new
lines:

def threeLines():
new_line()
new_line()
new_line()

print "First Line."
threeLines()
print "Second Line."

This function contains three statements, all of which are indented by two spaces.
Since the next statement is not indented, Python knows that it is not part of
the function.

You should notice a few things about this program:

1. You can call the same procedure repeatedly. In fact, it is quite common
and useful to do so.

2. You can have one function call another function; in this case threeLines
calls new_line.

24 CHAPTER 3. FUNCTIONS

So far, it may not be clear why it is worth the trouble to create all these new
functions. Actually, there are a lot of reasons, but this example demonstrates
two:

e Creating a new function gives you an opportunity to give a name to a group
of statements. Functions can simplify a program by hiding a complex
computation behind a single command, and by using English words in
place of arcane code.

e Creating a new function can make a program smaller by eliminating repet-
itive code. For example, a short way to print nine consecutive new lines
is to call threeLines three times.

As an exercise, write a function colled ninelines that wuses
threeLines to print nine blank lines. How would you print 27 new
lines?

3.7 Definitions and use

Pulling together the code fragments from the previous section, the whole pro-
gram looks like this:

def new_line():
print

def threeLines():
new_line()
new_line()
new_line()

print "First Line."
threeLines()
print "Second Line."

This program contains two function definitions: new_line and threeLines.
Function definitions get executed just like other statements, but the effect is to
create the new function. The statements inside the function do not get executed
until the function is called, and the function definition generates no output.

As you might expect, you have to create a function before you can execute
it. It other words, the function definition has to be executed before the first
time it is called.

As an ezercise, try running this program with the last three state-
ments moved to the top of the program and record which error mes-
sage you get.

As another exercise, try taking the working version of the pro-
gram and moving the definition of new_ line after the definition of
threelLines. What happens when you run this program?

3.8. FLOW OF EXECUTION 25

3.8 Flow of execution

In order to insure that a function is defined before its first use, you have to
know the order in which statements are executed, which is called the flow of
execution.

Execution always begins at the first statement of the program. Statements
are executed one at a time, in order, unless you reach a function call.

Function definitions do not alter the flow of execution of the program, but
remember that that statements inside the function are not executed until the
function is called. Although it is not common, you can define one function inside
another. In this case, the inner definition isn’t executed until the outer function
is called.

Function calls are like a detour in the flow of execution. Instead of going
to the next statement, the flow jumps to the first line of the called function,
executes all the statements there, and then comes back to pick up where it left
off.

That sounds simple enough, until you remember that one function can call
another. While we are in the middle of one function, we might have to go off
and execute the statements in another function. But while we are executing
that new function, we might go off and execute yet another function!

Fortunately, Python is adept at keeping track of where it is, so each time a
function completes, the program picks up where it left off in the function that
called it. When it gets to the end of the program, it terminates.

What’s the moral of this sordid tale? When you read a program, don’t read
from top to bottom. Instead, follow the flow of execution.

3.9 Parameters and arguments

Some of the built-in functions we have used require arguments, the values that
control how the function does its job. For example, if you want to find the
sine of a number, you have to indicate what the number is. Thus, sin takes a
numeric value as an argument.

Some functions take more than one argument, like pow, which takes two
arguments, the base and the exponent. Inside the function, the values that are
passed get assigned to variables called parameters.

Here is an example of a user-defined function that takes a parameter:

print bruce, bruce

This function takes a single argument and assigns it to a parameter named
bruce. The value of the parameter (at this point we have no idea what it will
be) gets printed twice, followed by a newline. The name bruce was chosen to
suggest that the name you give a parameter is up to you, but in general you
want to choose something more illustrative than bruce.

The function printTwice works for any type that can be printed:

26 CHAPTER 3. FUNCTIONS

>>> printTwice(’Spam’)
Spam Spam

>>> printTwice(5)

55

>>> printTwice(3.14159)
3.14159 3.14159

In the first function call, the argument is a string; in the second it’s an integer,
in the third it’s a float.

The same rules of composition that apply to built-in functions also apply to
user-defined functions, so you can use any kind of expression as an argument
for printTwice.

>>> printTwice(’Spam’*4)
SpamSpamSpamSpam SpamSpamSpamSpam
>>> printTwice(math.cos(math.pi))
-1.0 -1.0

As usual, the expression is evaluated before the function is run.
Also, we can use a variable as an argument:

>>> latoya = ’Eric, the half a bee.’
>>> printTwice(latoya)
Eric, the half a bee. Eric, the half a bee.

Notice something very important here: the name of the variable we pass as an
argument (latoya) has nothing to do with the name of the parameter (bruce).
It doesn’t matter what the value was called back home (in the caller); here in
printTwice we call everybody bruce.

3.10 Variables and parameters are local

When you create a variable inside a function, it only exists inside the function,
and you cannot use it outside. For example, the function

>>> def catTwice(partl, part2):
cat = partl + part2
>>> printTwice(cat)

takes two arguments, concatenates them, then prints the result twice. We can
call the function with two strings:

>>> chantl = "Die Jesu domine, "
>>> chant2 = "Dona eis requiem."
>>> catTwice(chantl, chant2)

Die Jesu domine, Dona eis requiem. Die Jesu domine, Dona eis requiem.

3.11. STACK DIAGRAMS 27

When cat terminates, the variable cat is destroyed. If we try to print it, we
get an error:

>>> print cat
NameError: cat

Similarly, if we try to use cat inside printTwice we get an error:

>>> def printTwice(bruce):
print cat, cat

>>> catTwice(chantl, chant2)
NameError: cat

The same rules that apply to variables also apply to parameters. For example,
outside the function printTwice, there is no such thing as bruce. If you try to
use it, Python will complain.

3.11 Stack diagrams

To keep track of which variables can be used where, it is sometimes useful to
draw a stack diagram. Like state diagrams, stack diagrams show the value of
each variable, but they also show the function each variable belongs to.

Each function is represented by a box with the name of the function beside
it. The parameters and variables that belong to that function go inside. For
example, the stack diagram for the previous program looks like this:

chanil
e Jows dhammic,

N mam
chanid

=10 o e o AT

il

E—h‘ el dimnme, Dy o reouem ™ | G8

e

E—h— "Die e dimine, Dona an meouiem” | BH06E

The order of the stack shows the flow of execution. printTwice was called
by catTwice and catTwice was called by __main_, which is a special name for
the topmost function. When you create a variable outside of any function, it
belongs to _main__.

28 CHAPTER 3. FUNCTIONS

In each case, a parameter refers to the same value as the corresponding
argument. So partl in catTwice has the same value as chantl in _main__.

3.12 Functions with results

You might have noticed by now that some of the functions we are using, like
the math functions, yield results. Other functions, like new_1ine, perform an
action but don’t return a value. That raises some questions:

1. What happens if you call a function and you don’t do anything with the
result (i.e. you don’t assign it to a variable or use it as part of a larger
expression)?

2. What happens if you use a function without a result as part of an expres-
sion, like new_line() + 77

3. Can we write functions that yield results, or are we stuck with things like
new_line and printTwice?

The answer to the third question is “yes, you can write functions that return
values,” and we’ll do it in Chapter 5.

As a final exercise, answer the other two questions by trying them
out. Any time you have a question about what is legal or illegal in
Python, a good way to find out is to ask the interpreter.

3.13 Glossary

function call: A statement that executes a function. It consists of the name
of the function followed by a list of arguments enclosed in parentheses.

argument: A value provided to a function when the function is called. This
value is assigned to the corresponding parameter in the function.

return value: The result of a function which is sent back to the part of the
program from which the function was called. If a function call appears on
the left hand side of an assignment statement and a variable on the right
hand side, then the return value will be referenced by the variable.

coercion: The forced conversion of values of one mathematical type into equiv-
alent values of another mathematical type to make evaluation of expres-
sions involving mixed types possible. For example, in the expression
3/2.0, 3 is of type int, and 2.0 is of type float, so 3 must first be
coersed into a float before floating point division can be performed.

module: A file that contains a collection of related functions and classes.

3.13. GLOSSARY 29

function: A named sequence of statements that performs some useful opera-
tion. Functions may or may not take parameters, and may or may not
produce a result.

function definition: A statement that creates a new function, specifying its
name, parameters, and the statements it executes.

flow of execution: The order in which statements are executed during a pro-
gram run.

parameter: A name used inside a function to refer to the value passed as an
argument.

local variable: A variable defined inside a function. A local variables can only
be used inside its function.

stack diagram: A graphical representation of a stack of functions, their vari-
ables, and the values they refer to.

30

CHAPTER 3. FUNCTIONS

Chapter 4

Conditionals and recursion

4.1 The modulus operator

The modulus operator works on integers (and integer expressions) and yields
the remainder when the first operand is divided by the second. In Python, the
modulus operator is a percent sign, %. The syntax is the same as for other
operators:

quotient = 7 / 3
remainder = 7 % 3

The first operator, integer division, yields 2. The second operator yields 1.
Thus, 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you
can check whether one number is divisible by another: if x % y is zero, then x
is divisible by y.

Also, you can use the modulus operator to extract the rightmost digit or
digits from a number. For example, x % 10 yields the rightmost digit of x (in
base 10). Similarly x % 100 yields the last two digits.

4.2 Conditional execution

In order to write useful programs, we almost always need the ability to check
certain conditions and change the behavior of the program accordingly. Condi-
tional statements give us this ability. The simplest form is the if statement:

if x > 0:
print "x is positive"

The expression between the if and the : is called the condition. If it is true,
then the indented statement gets executed. If the condition is not true, nothing
happens.

The condition can contain any of the comparison operators:

31

32 CHAPTER 4. CONDITIONALS AND RECURSION

X =y # x equals y

x!'=y # x is not equal to y

x>y # x is greater than y

x <y # x is less than y

X >=y # x is greater than or equal to y
x <=y # x is less than or equal to y

Although these operations are probably familiar to you, the syntax Python uses
is a little different from symbols used in mathematics. A common error is to use
a single = instead of a double ==. Remember that = is the assignment operator,
and == is a comparison operator. Also, there is no such thing as =< or =>.

4.3 Compound Statements

The if statement is the second example we have seen of a compound state-
ment. The first was the function definition. All compound statements have a
common syntax:

HEADER:
FIRST STATEMENT

LAST STATEMENT

The header begins on a new line and ends with a colon. The indented state-
ments that follow are called a statement block or statement body. The first
unindented statement marks the end of the block.

All the statements in the body are treated as a unit. In the case of an if
statement, either all of them or none of them are executed.

4.4 Alternative execution

A second form of the if statement is alternative execution, in which there are
two possibilities, and the condition determines which one gets executed. The
syntax looks like:

if x%2 == 0:

print x, "is even"
else:

print x, "is odd"

If the remainder when x is divided by 2 is zero, then we know that x is even,
and this program displays a message to that effect. If the condition is false, the
second set of statements is executed. Since the condition must be true or false,
exactly one of the alternatives will be executed.

As an aside, if you think you might want to check the parity (evenness or
oddness) of numbers often, you might want to “wrap” this code up in a function:

4.5. MULTIPLE BRANCHES 33

def printParity(x):
if x%2 == 0:
print x, "is even"
else:
print x, "is odd"

Now you have a function named printParity that displays an appropriate
message for any integer you care to provide. You would call this function as
follows:

printParity(17)

4.5 Multiple Branches

Another name for conditional execution is conditional branching, because
this type of control structure causes the flow of execution to branch off in differ-
ent directions. Sometimes you want to check for a number of related conditions
and choose one of several actions. The following trichotomy test shows how to
do this multiple branching:

if x < y:

print x, "is less than", y
elif x > y:

print x, "is greater than", y
else:

print x, "and", y, "are equal"

As an exercise, wrap the trichotomy code above in a function called compare (x,
¥).

The elif statement ("elif” is an abbreviation of ”else if”) can be repeated
as many times as needed to select from several conditions:

if choice == ’A’:
functionA ()

elif choice == ’B’:
functionB()

elif choice == ’C’:
functionC()

elif choice == ’D’:
functionD()

else:

print "Invalid choice."

4.6 Nested conditionals

One conditional can also be nested within another. We could have written the
trichotomy example as:

34 CHAPTER 4. CONDITIONALS AND RECURSION

if x ==

print x, "and", y, "are equal"
else:

if x < y:

print x, "is less than", y
else:
print x, "is greater than", y

There is now an outer conditional that contains two branches. The first branch
contains a simple output statement, but the second branch contains another if
statement, which has two branches of its own. Fortunately, those two branches
are both output statements, although they could have been conditional state-
ments as well.

Although the indentation of the statements makes the structure apparent,
nested conditionals get difficult to read very quickly. In general, it is a good
idea to avoid them when you can.

On the other hand, this kind of nesting is common, and we will see it again,
so you should become familiar with it.

4.7 The return statement

The return statement allows you to terminate the execution of a function before
you reach the end. One reason to use it is if you detect an error condition:

import math

def printLogarithm(x):
if x <= 0:
print "Positive numbers only, please."
return

result = math.log(x)
print "The log of x is", result

This defines a function named printLogarithm that takes a parameter named
x. The first thing it does is check whether x is less than or equal to zero, in which
case it displays an error message and then uses return to exit the function. The
flow of execution immediately returns to the caller and the remaining lines of
the function are not executed.

Remember that any time you want to use a function from the math module,
you have to import it.

4.8 Recursion

We mentioned in the last chapter that it is legal for one function to call another,
and we have seen several examples of that. We neglected to mention that it is

4.8. RECURSION 35

also legal for a function to call itself. It may not be obvious why that is a good
thing, but it turns out to be one of the most magical and interesting things a
program can do.

For example, look at the following function:

def countdown(n):
if n ==
print "Blastoff!"
else:
print n
countdown (n-1)

The name of the function is countdown and it takes a single parameter. If the
parameter is zero, it outputs the word “Blastoff.” Otherwise, it outputs the
parameter and then calls a function named countdown—itself—passing n-1 as
an argument.

What happens if we call this function like this:

countdown(3)

The execution of countdown begins with n=3, and since n is not zero, it outputs
the value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is not zero,
it outputs the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n
is not zero, it outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and
since n is zero, it outputs the word “Blastoff!”
and then returns.

The countdown that got n=1 returns.
The countdown that got n=2 returns.

The countdown that got n=3 returns.
And then you’re back in _main__ (what a trip). So the total output looks
like:

3
2
1
Blastoff!

As a second example, let’s look again at the functions newLine and threeLine.

36 CHAPTER 4. CONDITIONALS AND RECURSION

def newline():
print

def threeLines():
newLine()
newLine()
newLine()

Although these work, they would not be much help if we wanted to output 2
newlines, or 106. A better alternative would be

def nLines(n):
if n > O:
print
nLines(n-1)

This program is similar to countdown; as long as n is greater than zero, it
outputs one newline, and then calls itself to output >n-1 additional newlines.
Thus, the total number of newlines is 1 + (n-1), which if you do your algebra
right comes out to n.

The process of a function calling itself is called recursion, and such functions
are said to be recursive.

4.9 Infinite recursion

In the examples in the previous section, each time the functions get called
recursively, the argument gets smaller by one, so eventually it gets to zero.
When the argument is zero, the function returns immediately, without making
any recursive calls. This case—when the function completes without making a
recursive call—is called the base case.

If a recursion never reaches a base case, it will go on making recursive calls
forever and the program will never terminate. This is known as infinite re-
cursion, and it is generally not considered a good idea.

In most programming environments, a program with infinite recursion will
not really run forever. Instead, the maximum recursion depth will be reached
and Python will report an error message:

RuntimeError: Maximum recursion depth exceeded

As an exercise, write a function with infinite recursion and run it in
the Python interpreter so that you get the error message above.

4.10 Stack diagrams for recursive functions

In the previous chapter we used a stack diagram to represent the state of a
program during a function call. The same kind of diagram can make it easier
to interpret a recursive function.

4.11. KEYBOARD INPUT 37

Every time a function gets called, it creates a new instance of the function.
The instance contains the function’s local variables and parameters. When the
function completes, that instance goes away. For a recursive function, there
might be more than one instance on the stack at the same time.

This figure shows a stack diagram for countdown, called with n = 3:

meiin
n

E_h_ o | coumldow

k|

n

E] + | coumidown
n

E I B CTIUTECEPS T
m

E P cniiild s

There is one instance of _main__ and four instances of countdown, each with
a different value for the parameter n. The bottom of the stack, countdown with
n=0, is the base case. It does not make a recursive call, so there are no more
instances of countdown.

The instance of _main__ is empty because we did not create any variables
in it or pass any parameters to it.

As an exercise, draw a stack diagram for nLines, invoked with the
parameter n=4.

4.11 Keyboard input

The programs we have written so far are a bit rude in the sense that they accept
no input from the user. They just do the same thing every time.

Python provides built-in functions that get input from the keyboard. The
simplest is called raw_input. When you call this function, the program stops
and waits for the user to type something. When the user presses return or
enter, the program resumes and raw_input return what the user types as a
string:

>>> input = raw_input ()
What are you waiting for?
>>> print input

What are you waiting for?

Before calling raw_input, it is a good idea to print a message telling the user

CHAPTER 4. CONDITIONALS AND RECURSION

what to input. This message is called a prompt. You can supply a prompt as
an argument to raw_input:

>>> name = raw_input ("What...is your name? ")
What...is your name? Arthur, King of the Britoms!
>>> print name

Arthur, King of the Britoms!

If you are expecting the response to be an integer, you can use the input
function. For example,

>>> prompt = "What...is the airspeed velocity of an unladen swallow?\n"
>>> speed = input (prompt)

If the user types a string of digits, it will be converted to an integer and assigned
to speed. Unfortunately, if the user types a non-digit, the program crashes:

>>> speed = input (prompt)

What...is the airspeed velocity of an unladen swallow?
What do you mean, an African or a European swallow?
SyntaxError: invalid syntax

To avoid this kind of error, it is generally a good idea to use raw_input to get
a string and then use the conversion functions to convert to other types.

4.12 Glossary

modulus operator: An operator that works on integers and yields the remain-

der when one number is divided by another. In Python it is denoted with
a percent sign (%).

conditional statement: A statement that controls the flow of execution in a

program depending on some condition.

compound statement: A Python that consists of a header ending with a

colon and a block or body of one or more statements with the same in-
dentation.

block: A group of one or more statements that are treated as a single statement

in the sense that they are all executed together in sequence. In Python
the block of statements which make up the body of a compound statement
must all be indendent the same amount relative to the statement header.

body: The statement block in a compound statement that follows the state-

ment header.

conditional branching: A flow of execution that can follow several possible

paths, depending on the effect of condition statements.

4.12. GLOSSARY 39

nesting: One program structure within another; for example, a conditional
statement inside one or both branches of another conditional statement.

recursion: The process of calling the function you are currently executing.

base case: The branch of the conditional statement in a recursive function that
does not result in a recursive call. If a call to a recursive function does not
eventually lead to the base case than it will result in infinite recursion.

infinite recursion: A function that calls itself recursively without every reach-
ing the base case. Eventually an infinite recursion will cause a run-time
€error.

prompt: A visual cue that tells the user to input data.

40

CHAPTER 4. CONDITIONALS AND RECURSION

Chapter 5

Fruitful functions

5.1 Return values

Some of the built-in functions we have used, like the math functions, have
produced results. That is, the effect of calling the function is to generate a new
value, which we usually assign to a variable or use as part of an expression. For
example:

import math

e = math.exp(1.0)
height = radius * math.sin(angle)

But so far none of the functions we have written have returned a value. When
you call a function that does not return a value, it is typically on a line by itself,
with no assignment:

nLines(3)
countdown(n-1)

In this chapter, we are going to write functions that return things, which we
will refer to as fruitful functions, for want of a better name. The first example
is area, which returns the area of a circle with the given radius:

import math

def area(radius):
temp = math.pi * radius**2
return temp

In the last line of the function the return statement now includes a return
value. This statement means, “return immediately from this function and use
the following expression as a return value.” The expression you provide can be
arbitrarily complicated, so we could have written this function more concisely:

41

42 CHAPTER 5. FRUITFUL FUNCTIONS

def area(radius):
return math.pi * radius**2

On the other hand, temporary variables like temp often make debugging
easier.

Sometimes it is useful to have multiple return statements, one in each branch
of a conditional:

def absoluteValue(x):
if x < 0:
return -x
else:
return x

Since these return statements are in an alternative conditional, only one
will be executed. Although it is legal to have more than one return statement
in a function, you should keep in mind that as soon as one is executed, the
function terminates without executing any subsequent statements.

Code that appears after a return statement, or any place else where it can
never be executed, is called dead code. It can never be executed because it
can never be reached by any possible flow of execution of the program.

If you put return statements inside a conditional, then you have to guarantee
that every possible path through the program hits a return statement. For
example:

def absoluteValue(x):
if x < 0:
return -x
elif x > O:
return x # ERROR!!

This program is not correct because if x happens to be 0, then neither condition
will be true and the function will end without hitting a return statement. In
this case, the return value is a special value called None.

>>> print absoluteValue(0)
None

As an exercise, rewrite the compare function that you wrote in sec-
tion 4.5 so that it returns 1 if x >y, 0 if x == y, and -1 if x <
y.

5.2 Program development

At this point you should be able to look at complete Python functions and tell
what they do. You also have some experience making small modifications to

5.2. PROGRAM DEVELOPMENT 43

existing functions. It may not be clear to you yet, however, how to go about
writing a function from scratch.

We are going to suggest one technique that we will call incremental de-
velopment.

As an example, imagine you want to find the distance between two points,
given by the coordinates (Xi,y1) and (z2,y2). By the usual definition, with
sqrt representing the square root function,

distance = \/(272 —21)2 + (y2 — y1)? (5.1)

The first step is to consider what a distance function should look like in Python.
In other words, what are the inputs (parameters) and what is the output (return
value).

In this case, the two points are the parameters, which we can represent using
four parameters. The return value is the distance.

Already we can write an outline of the function:

def distance(xl, y1, x2, y2):
return 0.0

The return statement is a placekeeper so that the function will run when we
test it and return something, even though it is not the right answer. At this
stage the function doesn’t do anything useful, but it is worthwhile to try running
it so we can identify any syntax errors before we make it more complicated.

In order to test the new function, we have to call it with sample values, as
in the following session:

>>> def distance(x1, yi1, x2, y2):
return 0.0

>>> distance(1, 2, 4, 6)
0.0
>>>

These values were chosen so that the horizontal distance is 3 and the vertical
distance is 4; that way, the result will be 5 (the hypotenuse of a 3-4-5 triangle).
When you are testing a function, it is useful to know the right answer.

Once we have checked the syntax of the function definition, we can start
adding lines of code one at a time. After each incremental change, we test the
function again. That way, at any point we know exactly where the error must
be—in the last line we added.

The next step in the computation is to find the differences z2 —x; and yo—y;.
We will store those values in temporary variables named dx and dy.

def distance(xl, y1, x2, y2):
dx = x2 - x1
dy = y2 -yl

44 CHAPTER 5. FRUITFUL FUNCTIONS

print "dx is", dx
print "dy is", dy
return 0.0

We added output statements that will let us to check the intermediate values
before proceeding. We already know that they should be 3 and 4.

When the function is finished we will remove the output statements. Code
like that is called scaffolding, because it is helpful for building the program,
but it is not part of the final product. Sometimes it is a good idea to keep the
scaffolding around, but comment it out, just in case you need it later.

The next step in the development is to square dx and dy.

def distance(xl, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
print "dsquared is: ", dsquared
return 0.0

Again, we would run the program at this stage and check the intermediate value
(which should be 25).

Finally, if we have imported it from the math module, we can use the sqrt
function to compute and return the result.

def distance(xl, yi, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
result = sqrt(dsquared)
return result

As you gain more experience programming, you might find yourself writing
and debugging more than one line at a time. Nevertheless, this incremental
development process can save you a lot of debugging time.

The key aspects of the process are:

1. Start with a working program and make small, incremental changes. At
any point, if there is an error, you will know exactly where it is.

2. Use temporary variables to hold intermediate values so you can output
and check them.

3. Once the program is working, you might want to remove some of the
scaffolding or consolidate multiple statements into compound expressions,
but only if it does not make the program difficult to read.

5.3. COMPOSITION 45

As an exercise, use incremental development to write a function
called hypotenuse that returns the length of the hypotenuse of a
right triangle given the lengths of the two legs as parameters. You
should record each stage of the incremental development process as
Yyou go.

5.3 Composition

As you should expect by now, once you define a new function, you can use it as
part of an expression, and you can build new functions using existing functions.
For example, what if someone gave you two points, the center of the circle and
a point on the perimeter, and asked for the area of the circle?

Let’s say the center point is stored in the variables xc and yc, and the
perimeter point is in xp and yp. The first step is to find the radius of the circle,
which is the distance between the two points. Fortunately, we have a function,
distance, that does that.

radius = distance(xc, yc, xp, yp)
The second step is to find the area of a circle with that radius, and return it.

result = area(radius)
return result

Wrapping that all up in a function, we get:

def area2(xc, yc, xp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)
return result

We called this function jttjarea2;j/tt; to distinguish it from the area function
defined earlier. There can only be one function of a given name within a given
module. We will talk more about this later when we discuss modules and
namespaces.

The temporary variables radius and area are useful for development and
debugging, but once the program is working we can make it more concise by
composing the function calls:

def area2(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

As an ezxercise, write a function slope(xl, y1, x2, y2) that re-
turns the slope of the line through the points (z1, y1) and (x2, y2).
Then use this function in a function called intercept (x1, y1, x2,
y2) that returns the y-intercept of the line through the points (z1,
yl) and (22, y2).

46 CHAPTER 5. FRUITFUL FUNCTIONS

5.4 Boolean expressions and logical operators

The condition statement that follows an if is an example of a boolean ex-
pression. Boolean expressions are expressions which evaluate to either true or
false. In Python, boolean expressions evaluate to 1 if the expression is true and
0 if it is false. For example:

>>> 5 ==5
1

>>> 5 == 6
0

>>>

The operator == compares two values and produces a boolean value. In the first
statement the two operands are equal, so the expression evaluates to 1; in the
second example, 5 is not equal to 6, so we get 0.

There are three logical operators in Python: and, or and not. The se-
mantics (meaning) of these operators is similar to their meaning in English. For
example x > 0 and x < 10 is true only if x is greater than zero AND less than
10.

n%2 == 0 or n%3 == 0 is true if either of the conditions is true, that is, if
the number is divisible by 2 OR 3.

Finally, the not operator has the effect of negating or inverting a boolean
expression, so not (x > y) is true if (x > y) is false; that is, if x is less than or
equal to y.

Logical operators often provide a way to simplify nested conditional state-
ments. For example, we can rewrite the following code using a single conditional:

if 0 > x:
if x < 10:
print "x is a positive single digit."

The print statement is executed only if we make it past both of the conditionals,
so we need to use the and operator:

if 0 < x and x < 10:
print "x is a positive single digit."

These kinds of conditions are common, so Python provides an alternate syntax
that is similar to mathematical notation:

if 0 < x < 10:
print "x is a positive single digit."

Python evaluates the expressions involving the operands on both sides of each
operator and ands them together to produce a result.

5.5. BOOLEAN FUNCTIONS 47

5.5 Boolean functions

Functions can return boolean values, which is often convenient for hiding com-
plicated tests inside functions. For example:

def isDivisible(x, y):

if x % y == O:

return 1 # it’s true
else:

return 0O # it’s false

The name of this function is isDivisible. It is common to give boolean func-
tions names that sound like yes/no questions. We return either 1 or 0 to indicate
whether the argument passed to it is or isn’t a single digit.

We can reduce the size of this function by taking advantage of the fact that
the conditional statement after the if is itself a boolean expression. We can
simply return it directly, avoiding the if statement altogether:

def isDivisible(x, y):
return x % y ==

The following session shows the new function in action:

>>> isDivisible(6, 4)
0
>>> isDivisible(6, 3)
1

The most common use of boolean functions is inside conditional statements

if isDivisible(x, y):

print "x is divisible by y"
else:

print "x is not divisible by y"

As an exercise, write a function isBetween(x, y, z) that returns
1 whenever y <= x <= z and 0 otherwise.

5.6 More recursion

So far we have only learned a small subset of Python, but you might be interested
to know that this subset is now a complete programming language, by which we
mean that anything that can be computed can be expressed in this language.
Any program ever written could be rewritten using only the language features
we have used so far (actually, we would need a few commands to control devices
like the keyboard, mouse, disks, etc., but that’s all).

48 CHAPTER 5. FRUITFUL FUNCTIONS

Proving that claim is a non-trivial exercise first accomplished by Alan Tur-
ing, one of the first computer scientists (well, some would argue that he was a
mathematician, but a lot of the early computer scientists started as mathemati-
cians). Accordingly, it is known as the Turing thesis. If you take a course on
the Theory of Computation, you will have a chance to see the proof.

To give you an idea of what you can do with the tools we have learned so
far, we’ll evaluate a few recursively-defined mathematical functions. A recursive
definition is similar to a circular definition, in the sense that the definition
contains a reference to the thing being defined. A truly circular definition is not
very useful:

frabjuous: an adjective used to describe something that is frabjuous.

If you saw that definition in the dictionary, you might be annoyed. On
the other hand, if you looked up the definition of the mathematical function,
factorial, you might get something like:

o=1
nl=n-(n-1)!

This definition says that the factorial of 0 is 1, and the factorial of any other
value, n, is n multiplied by the factorial of n — 1. So 3! is 3 times 2!, which is 2
times 1!, which is 1 times 0!. Putting it all together, we get 3! equal to 3 times
2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can usually write a
Python program to evaluate it. The first step is to decide what the parameters
are for this function. With little effort, you should conclude that factorial takes
a single parameter.

def factorial(m):
If the argument happens to be zero, all we have to do is return 1:

def factorial(m):
if n ==
return 1

Otherwise, and this is the interesting part, we have to make a recursive call to
find the factorial of n — 1, and then multiply it by n.

def factorial(nm):
if n ==
return 1
else:
recurse = factorial(n-1)
result = n * recurse
return result

5.7. LEAP OF FAITH 49

If we look at the flow of execution for this program, it is similar to nLines from
the previous chapter. If we call factorial with the value 3:

Since 3 is not zero, we take the second branch and calculate the factorial of
n-1...

Since 2 is not zero, we take the second branch and calculate the
factorial of n — 1...

Since 1 is not zero, we take the second branch and calculate
the factorial of n — 1...

Since 0 is zero, we take the first branch and re-
turn the value 1 immediately without making any
more recursive calls.

The return value (1) gets multiplied by n, which is 1, and
the result is returned.

The return value (1) gets multiplied by n, which is 2, and the result
is returned.

The return value (2) gets multiplied by n, which is 3, and the result, 6, is
returned to __main__, or whoever called factorial (3).
Here is what the stack diagram looks like for this sequence of function calls:

f i

fn:]- recurse: 2 resali: 6 | fhetonal

n:2 mourse: 1 sl 2 | Gcioeal
E n: 1 mourses 1 pegule: |) factorinl
f [factomial

The return values are shown being passed back up the stack.
Notice that in the last instance of factorial, the local variables recurse

and result do not exist because when n = 0 the branch that creates them does
not execute.

5.7 Leap of faith

Following the flow of execution is one way to read programs, but as you saw
in the previous section, it can quickly become labyrinthine. An alternative is
what we call the “leap of faith.” When you come to a function call, instead of
following the flow of execution, you assume that the function works correctly
and returns the appropriate value.

50 CHAPTER 5. FRUITFUL FUNCTIONS

In fact, you are already practicing this leap of faith when you use built-
in functions. When you call math.cos or math.exp, you don’t examine the
implementations of those functions. You just assume that they work, because
the people who wrote the built-in libraries were good programmers.

Well, the same is true when you call one of your own functions. For example,
in Section 5.5 we wrote a function called isDivisible that determines whether
one number is divisible by another. Once we have convinced ourselves that this
function is correct—by testing and examination of the code—we can use the
function without ever looking at the code again.

The same is true of recursive programs. When you get to the recursive call,
instead of following the flow of execution, you should assume that the recursive
call works (yields the correct result), and then ask yourself, “Assuming that I
can find the factorial of n — 1, can I compute the factorial of n?” In this case,
it is clear that you can, by multiplying by n.

Of course, it is a bit strange to assume that the function works correctly
when you have not even finished writing it, but that’s why it’s called a leap of
faith!

5.8 One more example

In the previous example we used temporary variables to spell out the steps, and
to make the code easier to debug, but we could have saved a few lines:

def factorial(n):
if n ==
return 1
else:
return n * factorial(n-1)

From now on we will tend to use the more concise version, but we recommend
that you use the more explicit version while you are developing code. When
you have it working, you can tighten it up, if you are feeling inspired.

After factorial, the most common example of a recursively-defined math-
ematical function is fibonacci, which has the following definition:

fibonacci(0) =1
fibonacci(1) =1
fibonacci(n) = fibonacci(n — 1) + fibonacci(n — 2);

Translated into Python, this is

def fibonacci (n):
if n == 0 or n ==
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)

5.9. CHECKING TYPES 51

If you try to follow the flow of execution here, even for fairly small values of n,
your head explodes. But according to the leap of faith, if we assume that the
two recursive calls (yes, you can make two recursive calls) work correctly, then
it is clear that we get the right result by adding them together.

5.9 Checking types
What happens if we call factorial and give it 1.5 as an argument?

>>> factorial (1.5)
RuntimeError: Maximum recursion depth exceeded

It looks like an infinite recursion. But how can that be? We have a base case,
when n == 0. The problem is that we are missing the base case. In the first
recursive call, the value of n is 0.5. In the next instance, it is —0.5. From there
it gets smaller and smaller, but it will never be 0.

We have two choices. We can try to generalize the factorial function so that
it works with floating-point numbers, or we can make factorial check the type of
its parameter. The first option has been done; it’s called the Gamma function.
So we’ll go for the second.

We can use the type function to compare the type of the parameter to the
type of a known integer value (like 1). While we’re at it, we can make sure the
parameter is positive:

def factorial (m):

if type(n) != type(1):
print "Factorial is only defined for integers."
return -1

elif n < O:
print "Factorial is only defined for positive integers."
return -1

elif n ==
return 1

else:
return n * factorial(n-1)

Now, in effect, we have three base cases. The first catches non-integers. The
second catches negative integers. In both cases we print an error message and
then return a special value —1 to indicate to the caller that something went
wrong.

>>> factorial (1.5)

Factorial is only defined for integers.

-1

>>> factorial (-2)

Factorial is only defined for positive integers.

52 CHAPTER 5. FRUITFUL FUNCTIONS

-1

>>> factorial ("fred")

Factorial is only defined for integers.
-1

If we get past both checks, then we know that n is a positive integer, and so we
can prove that the recursion terminates.

This style of programming is sometimes called a guardian pattern. The
first two conditionals act as guardians, protecting the code the follows from
values that might cause an error. The guardians make it possible to prove the
correctness of the code.

5.10 Glossary

temporary variable: A variable used to store an intermediate value in a com-
plex calculation.

return value: The value provided as the result of a function call.

dead code: Part of a program that can never be executed, often because it
appears after a return statement.

None: A special Python value which is returned by functions that either do not
have a return statement or have a return statement without an argument.
It is also possible to assign this value to a variable as in the statement: x
= Nomne. It is equivalent to a false boolean or an empty list.

incremental development: A program development methodology that uses
small, incremental changes to a working program to gradually modify it
until it does what it is intended to do.

scaffolding: Code that is used during program development but is not part of
the final version.

boolean expression: An expression that evaluates to one of two states, often
called true and false.

comparison operator: An operator that compares two values and produces a
boolean value that indicates the relationship between the operands. The
comparison operators in Python are ==, !=, > <, >= and <=.

logical operator: An operator that combines boolean values in order to test
compound conditions. The logical operators in Python are and, or, and
not.

guardian: A condition that checks for and handles circumstances that might
cause an error.

Chapter 6

Iteration

6.1 Multiple assignment

We haven’t discussed it until now, but it is legal in Python to make more
than one assignment to the same variable. The effect of the new assignment
is to redirect the variable so that it stops referring to the old value and starts
referring to the new value.

bruce = 5
print bruce,
bruce = 7
print bruce

The output of this program is 5 7, because the first time we print bruce his
value is 5, and the second time his value is 7. The comma, at the end of the first
print statement stops a newline from being printed at that point.

Here is what multiple assignment looks like in a state diagram:

Barises -:--.

When there are multiple assignments to a variable, it is especially important
to distinguish between an assignment statement and a statement of equality.
Because Python uses the = symbol for assignment, it is tempting to interpret a
statement like a = b as a statement of equality. It is not!

First of all, equality is commutative, and assignment is not. For example, in
mathematics if @ = 7 then 7 = a. But in Python the statement a = 7 is legal,
and 7 = ais not.

Furthermore, in mathematics, a statement of equality is true for all time. If
a = b now, then a will always equal b. In Python, an assignment statement can
make two variables equal, but they don’t have to stay that way!

53

54 CHAPTER 6. ITERATION

a=>5
b=a # a and b are now equal
a=3 # a and b are no longer equal

The third line changes the value of a but it does not change the value of b,
and so they are no longer equal. In some programming languages an alternate
symbol is used for assignment, such as <- or :=, in order to avoid confusion.

Although multiple assignment is frequently useful, you should use it with
caution. If the values of variables are changing constantly in different parts of
the program, it can make the code difficult to read and debug.

6.2 Iteration

One of the things computers are often used for is the automation of repetitive
tasks. Repeating identical or similar tasks without making errors is something
that computers do well and people do poorly.

We have seen programs that use recursion to perform repetition, such as
nLines and countdown. This type of repetition is called iteration, and Python
provides several language features that make it easier to write iterative pro-
grams.

The first feature that we are going to look at is the while statement.

6.3 The while statement
Using a while statement, we can rewrite countdown:

def countdown(n):
while n > O:
print n
n = n-1
print "Blastoff!"

You can almost read a while statement as if it were English. What this means

is, “While n is greater than zero, continue displaying the value of n and then

reducing the value of n by 1. When you get to zero, output the word ‘Blastoff!”’
More formally, the flow of execution for a while statement is as follows:

1. Evaluate the condition, yielding 0 or 1.

2. If the condition is false (0), exit the while statement and continue execu-
tion at the next statement.

3. If the condition is true (1), execute each of the statements in the body
of the while loop (all the statements indented the same amount under the
line containing the while), and then go back to step 1.

6.4. TABLES 55

This type of flow is called a loop because the third step loops back around
to the top. Notice that if the condition is false the first time through the loop,
the statements inside the loop are never executed.

The body of the loop should change the value of one or more variables so
that, eventually, the condition becomes false and the loop terminates. Otherwise
the loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of countdown, we can prove that the loop will terminate because
we know that the value of n is finite, and we can see that the value of n gets
smaller each time through the loop (each iteration), so eventually we have to
get to zero. In other cases it is not so easy to tell:

def sequence(n):

while n != 1:
print n,
if nY%2 == 0: # n is even
n =n/2
else: # n is odd
n = nx3+1
The condition for this loop is n != 1, so the loop will continue until n is 1,

which will make the condition false.

At each iteration, the program outputs the value of n and then checks
whether it is even or odd. If it is even, the value of n is divided by two. If
it is odd, the value is replaced by 3n+1. For example, if the starting value (the
argument passed to sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4,
2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious
proof that n will ever reach 1, or that the program will terminate. For some
particular values of n, we can prove termination. For example, if the starting
value is a power of two, then the value of n will be even every time through
the loop, until we get to 1. The previous example ends with such a sequence,
starting with 16.

Particular values aside, the interesting question is whether we can prove that
this program terminates for all values of n. So far, no one has been able to prove
it or disprove it!

As an ezxercise, rewrite the function nLines from section 4.8 using
iteration instead of recursion.

6.4 Tables

One of the things loops are good for is generating tabular data. For example,
before computers were readily available, people had to calculate logarithms,
sines and cosines, and other common mathematical functions by hand. To

96 CHAPTER 6. ITERATION

make that easier, there were books containing long tables where you could find
the values of various functions. Creating these tables was slow and boring, and
the result tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was,
”This is great! We can use the computers to generate the tables, so there will
be no errors.” That turned out to be true (mostly), but shortsighted. Soon
thereafter computers and calculators were so pervasive that the tables became
obsolete.

Well, almost. It turns out that for some operations, computers use tables of
values to get an approximate answer, and then perform computations to improve
the approximation. In some cases, there have been errors in the underlying
tables, most famously in the table the Intel Pentium used to perform floating-
point division.

Although a ”log table” is not as useful as it once was, it still makes a good
example of iteration. The following program outputs a sequence of values in the
left column and their logarithms in the right column:

x=1.0

while x < 10.0:
print x, ’\t’, math.log(x)
x=x+ 1.0

The escape sequence \t represents a tab character. You can also use the
escape sequence \n to represent a newline character. These escape sequences
can be included anywhere in a string, although in this example the tab escape
sequence is the only thing in the string.

A tab character causes the cursor to shift to the right until it reaches one
of the tab stops. Tabs are useful for making columns of text line up, as in the
output of the program:

1.0 0.0

2.0 0.69314718056
3.0 1.09861228867
4.0 1.38629436112
5.0 1.60943791243
6.0 1.79175946923
7.0 1.94591014906
8.0 2.07944154168
9.0 2.19722457734

If these values seem odd, remember that the log function uses base e. Since
powers of two are so important in computer science, we often want to find
logarithms with respect to base 2. To do that, we can use the following formula:

logy z = (6.1)

Changing the output statement to

6.5. TWO-DIMENSIONAL TABLES 57

print x, ’\t’, math.log(x)/math.log(2.0)

yields
1.0 0.0
2.0 1.0
3.0 1.58496250072
4.0 2.0
5.0 2.32192809489
6.0 2.58496250072
7.0 2.80735492206
8.0 3.0
9.0 3.16992500144

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base
2 are round numbers. If we wanted to find the logarithms of other powers of
two, we could modify the program like this:

x=1.0

while x < 100.0:
print x, ’\t’, math.log(x)/math.log(2.0)
x=x % 2.0

Now instead of adding something to x each time through the loop, which yields
an arithmetic sequence, we multiply x by something, yielding a geometric se-
quence. The result is:

1.0 0.0
2.0 1.0
4.0 2.0
8.0 3.0
16.0 4.0
32.0 5.0
64.0 6.0

Because we are using tab characters between the columns, the position of the
second column does not depend on the number of digits in the first column.

Log tables may not be useful any more, but for computer scientists, knowing
the powers of two is!

As an exercise, modify this program so that it outputs the powers of
two up to 65536 (that’s 21%). Print it out and memorize it.

6.5 Two-dimensional tables

A two-dimensional table is a table where you choose a row and a column and
read the value at the intersection. A multiplication table is a good example.
Let’s say you wanted to print a multiplication table for the values from 1 to 6.

58 CHAPTER 6. ITERATION

A good way to start is to write a simple loop that prints the multiples of 2,
all on one line.

i=1

while i <= 6:
print 2*i, ’\t’,
i=13i+1

print

The first line initializes a variable named i, which is going to act as a counter,

or loop variable. As the loop executes, the value of i increases from 1 to 6,

and then when i is 7, the loop terminates. Each time through the loop, we

print the value 2*i followed by three spaces. By placing a comma at the end

of the print statement, we get all the output on a single line. After the loop

completes, a print statement with no arguments is used to start a new line.
The output of this program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

6.6 Encapsulation and generalization

Encapsulation usually means taking a piece of code and wrapping it up in a
function, allowing you to take advantage of all the things functions are good
for. We have seen two examples of encapsulation, when we wrote printParity
in Section 4.4 and isDivisible in Section 5.5.

Generalization means taking something specific, like printing multiples of 2,
and making it more general, like printing the multiples of any integer.

Here’s a function that encapsulates the loop from the previous section and
generalizes it to print multiples of n.

def printMultiples(n):
i=1
while i <= 6:
print n*i, ’\t’,
i=1+1
print

To encapsulate, all we had to do was add the first line, which declares the name
of the function and the parameter list. To generalize, all we had to do was
replace the value 2 with the parameter n.

If we call this function with the argument 2, we get the same output as
before. With argument 3, the output is:

3 6 9 12 15 18

6.7. MORE ENCAPSULATION 59

and with argument 4, the output is
4 8 12 16 20 24

By now you can probably guess how we are going to print a multiplication table:
we’ll call printMultiples repeatedly with different arguments. In fact, we are
going to use another loop to iterate through the rows.

i=1
while i <= 6:
printMultiples (i)

i=1i+1

First of all, notice how similar this loop is to the one inside printMultiples.
All we did was replace the print statement with a function call.
The output of this program is

1 2 3 4 5 6

2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36

which is a multiplication table.

6.7 More encapsulation

To demonstrate encapsulation again, we’ll take the code from the end of sec-
tion 6.6 and wrap it up in a function:

def printMultTable():

i=1
while i <= 6:
printMultiples (i)

i=1i+1

The process we are demonstrating is a common development plan. You de-
velop code gradually by adding lines in __main__ or someplace else, and then
when you get it working, you extract it and wrap it up in a function. This
process is made even easier by making use of the interpreter. First try out your
idea in the interpreter. This enables you to get immediate feedback on all those
?what happens if T write this?” questions. Once you have the function working
the way you want it to, use a text editor to save it in a module.

This development plan is also useful for another reason. Sometimes (more
often then not when you are first learning) you don’t know when you start
writing exactly how to divide the program into functions. This approach lets
you design as you go along.

60 CHAPTER 6. ITERATION

6.8 Local variables

You might be wondering how we can use the same variable i in both
printMultiples and printMultTable. Doesn’t it cause problems when one
of the functions changes the value of the variable?

The answer is ”"no,” because the i in printMultiples and the i in
printMultTable are not the same variable.

Remember that variables created inside a function definition are local. You
cannot access a local variable from outside its "home” function, and you are
free to have multiple variables with the same name, as long as they are not in
the same function.

The stack diagram for this program shows clearly that the two variables
named i are not the same variable. They can refer to different values, and
changing one does not affect the other.

Ein

| prinikdukTahle

il 1 3 i uliples

The value of i in printMultiple goes from 1 up to n. In the diagram, it
happens to be 2. The next time through the loop it will be 3.

It is often a good idea to use different variable names in different functions,
to avoid confusion, but there are good reasons to reuse names. For example, it is
common to use the names i, j and k as loop variables. If you avoid using them
in one function just because you used them somewhere else, you will probably
make the program harder to read.

6.9 More generalization

As another example of generalization, imagine you wanted a program that would
print a multiplication table of any size, not just the 6x6 table. You could add a
parameter to printMultTable:

def printMultTable(high):

i=1
while i <= high:
printMultiples(i)

i=1i+1

We replaced the value 6 with the parameter high. If printMultTable is called
with the argument 7, we get

1 2 3 4 5 6

6.9. MORE GENERALIZATION 61

2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36
7 14 21 28 35 42

which is fine, except that we probably want the table to be square (same num-
ber of rows and columns), which means we have to add another parameter to
printMultiples, to specify how many columns the table should have.

Just to be annoying, we will also call this parameter high, demonstrating
that different functions can have parameters with the same name (just like local
variables):

def printMultiples(n, high):
int i =1
while i <= high:
print n*i, ’\t’,
i=1+1
print

def printMultTable(high):
int i =1
while i <= high:
printMultiples(i, high)
i=1i+1

Notice that when we added a new parameter, we had to change the first line of
the function (the function heading), and we also had to change the place where
the function is called in printMultTable. As expected, this program generates
a square 7x7 table:

1 2 3 4 5 6 7

2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

When you generalize a function appropriately, you often find that the resulting
program has capabilities you did not intend. For example, you might notice
that the multiplication table is symmetric, because ab = ba, so all the entries
in the table appear twice. You could save ink by printing only half the table.
To do that, you only have to change one line of printMultTable. Change

printMultiples(i, high)

62 CHAPTER 6. ITERATION

to
printMultiples(i, i)
and you get
1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49

As an exercise, follow or trace the execution of this new version of
printMultTable to figure out how it works.

6.10 Functions

A few times now we have mentioned “all the things functions are good for.” By
now you might be wondering what exactly those things are. Here are some of
the reasons functions are useful:

e By giving a name to a sequence of statements, you make your program
easier to read and debug.

e Dividing a long program into functions allows you to separate parts of the
program, debug them in isolation, and then compose them into a whole.

e Functions facilitate both recursion and iteration.

e Well-designed functions are often useful for many programs. Once you
write and debug one, you can reuse it.

6.11 Glossary

multiple assignment: Making more than one assignment to the same variable
during the execution of a program.

iteration: The successive repetition (execution) of the body of a loop, until
a terminating or exit condition is met. In its singular use an iteration
refers to one pass through the loop body, including the evaluation of the
condition.

body: The statements inside the loop.

loop: A statement or group of statements that execute repeatedly until a ter-
minating condition is satisfied.

6.11. GLOSSARY 63

infinite loop: A loop whose terminating condition is never satisfied.

escape sequence: An escape character (\) followed by one or more printable
characters, used to designate a non-printable character. The other escape
sequences are:

Escape Sequence Meaning

\\ Backslash (\)

\’ Single quote (°)

\” Double quote (*)

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\n ASCII Linefeed (LF)

\t ASCII Horizontal Tab (TAB)

\v ASCII Vertical Tab (VT)

\ 0oo ASCII character with octal value ooo
\xhh... ASCII character with hex value hh...

tab: A special character that causes the cursor to move to the next tab stop
on the current line.

loop variable: A variable, often called a counter, that is used to determine the
terminating condition of a loop. When used as a counter, a loop variable is
incremented by 1 on each pass through the loop until the desired number
of iterations is met.

encapsulate: To divide a large complex program into components (like func-
tions) and isolate the components from each other (for example, by using
local variables).

generalize: To replace something unnecessarily specific (like a constant value)
with something appropriately general (like a variable or parameter). Gen-
eralization makes code more versatile, more likely to be reused, and some-
times even easier to write.

development plan: A process for developing a program. In this chapter, we
demonstrated a style of development based on developing code to do sim-
ple, specific things, and then encapsulating and generalizing,.

64

CHAPTER 6. ITERATION

Chapter 7

Strings

7.1 A compound data type

So far we have seen three types: ints, floats and strings. Of these, strings
are qualitatively different from the others because it is made up of smaller
pieces— the characters. strings are an example of compound data type.

Depending on what we are doing, we may want to treat a compound type
as a single thing, or we may want to access its parts. This ambiguity is useful.

There are a number of operations and functions we can use to access and
manipulate the characters that make up a string. The first of these is the
square brackets operator ([and 1), which selects and reads a single character
from a string:

>>> fruit = "banana"
>>> letter = fruit[1]
>>> print letter

The expression fruit[1] indicates that we want character number 1 from the
string named fruit. The result is stored in a variable named letter. When
we output the value of letter, we get a surprise:

a

a is not the first letter of "banana". Unless you are a computer scientist. For
perverse reasons, computer scientists always start counting from zero. The Oth
letter (“zero-eth”) of "banana" is b. The 1th letter (“one-eth”) is a and the 2th
(“two-eth”) letter is n.

If you want the zero-eth letter of a string, you have to put zero in the square
brackets:

>>> letter = fruit[0]
>>> print letter
b

65

66 CHAPTER 7. STRINGS

7.2 Length

The len function returns the number of characters in the given string:

>>> fruit = "banana"
>>> len(fruit)
6

To find the last letter of a string, you might be tempted to try something like

length = len(fruit)
last = fruit[lengthl # ERROR!

That won’t work. Instead, your program will end, and you will get an error
message.

The reason is that there is no 6th letter in "banana". Since we started
counting at 0, the 6 letters are numbered from 0 to 5. To get the last character,
you have to subtract 1 from length.

length = len(fruit)
last = fruit[length-1]

Alternatively, you can use negative indices, which count backwards from the
end of the string. The expression fruit[-1] yields the last letter, fruit[-2]
yields the second to last, and so on.

7.3 Traversal and the for loop

A common thing to do with a string is start at the beginning, select each char-
acter in turn, do something to it, and continue until the end. This pattern of
processing is called a traversal. One way to encode a traversal is with a while
statement:

index = 0

while index < len(fruit):
letter = fruit[index]
print letter
index = index + 1

This loop traverses the string and outputs each letter on a line by itself. Notice
that the condition is index < len(fruit), which means that when index is
equal to the length of the string, the condition is false and the body of the
loop is not executed. The last character we access is the one with the index
len(fruit)-1, which is the last character in the string.

The name of the loop variable is index. An index is a variable or value
used to specify one member of an ordered set, in this case the set of characters
in the string. The index indicates (hence the name) which one you want.

7.4. SLICING 67

As an exercise, write a function that takes a string as an argument
and that outputs the letters backwards, one per line.

The task of traversing or iterating through a string is so common that Python
provides an alternate, simpler, syntax: for loop.

for char in fruit:
print char

Each time through the loop, the next character in the string is assigned to the
variable char. The loop continues until there are no characters left.

The following example shows how to use concatenation and a for loop to
generate an abecedarian series. “Abecedarian” refers to a series or list in which
the elements appear in alphabetical order. For example, in Robert McCloskey’s
book Make Way for Ducklings, the names of the ducklings are Jack, Kack, Lack,
Mack, Nack, Ouack, Pack and Quack. Here is a loop that outputs these names
in order:

prefixes = "JKLMNOPQ"
suffix = "ack"

for letter in prefixes:
print letter + suffix

The output of this program is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because we’ve misspelled “Ouack” and “Quack.”

As an exercise, modify the program to correct this error.

7.4 Slicing

It is common to read part of a larger string, which in Python is called a slice.
The syntax for a slice expression is similar to the syntax for extracting a single
character.

68 CHAPTER 7. STRINGS

>>> s = "Peter, Paul, and Mary"
>>> print s[0:5]

Peter

>>> print s[7:11]

Paul

>>> print s[17:21]

Mary

The operator [n:m] returns the part of the string from the nth character to
the mth character, including the first, but excluding the last. This behavior is
counterintuitive, but it might make more sense if you picture the indices pointing
between the characters, as in the following diagram:

X "banana’

.ITII [

) 5 - | n

indices
If you omit the first index (before the colon), the slice starts at the beginning
of the string. If you omit the second index, the slice goes to the end of the string.

Thus:

>>> x = ’banana’

>>> x[:3]
’ban’
>>> x[3:]
’ana’

What do you think s[:] means?

7.5 string comparison

The comparison operators in Section 4.2 also work on strings. To see if two
strings are equal:

if word == "banana":
print "Yes, we have no bananas!"

Other comparison operations are useful for putting words in alphabetical order.

if word < "banana":

print "Your word," + word + ", comes before banana."
elif word < "banana':

print "Your word," + word + ", comes after banana."
else:

print "Yes, we have no bananas!"

7.6. STRINGS ARE NOT MUTABLE 69

You should be aware, though, that the Python does not handle upper and lower
case letters the same way that people do. All the upper case letters come before
all the lower case letters. As a result,

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard
format, like all lower-case, before performing the comparison. A more difficult
problem is making the program realize that zebras are not fruit.

7.6 strings are not mutable

It is tempting to use the [] operator on the left side of an assignment, with the
intention of changing one of the letters. For example:

greeting = "Hello, world!"
greeting[0] = °J° # ERROR!
print greeting

Instead of producing the output Jello, world!, this code produces an error
message like

TypeError: object doesn’t support item assignment

An alternative is to create a new string by concatenating a new character and
the remainder of the original string:

greeting = "Hello, world!"
new_greeting = ’J’ + greeting[1:]
print new_greeting

But keep in mind that this operation does not modify the original string.

7.7 A find function

Take a look at the following function and figure out what it does.

def find(str, ch):
index = 0
while index < len(str):
if str[index] == ch:
return index
index = index + 1
return -1

70 CHAPTER 7. STRINGS

In a sense find is the opposite of the [] operator. Instead of taking an index
and extracting the corresponding character, it takes a character and finds the
index where that character first appears. If the character is not found, the
function returns -1.

It is possible for the function to return before it traverses the entire string.
If str[index] == ch, the function returns immediately. If we get all the way
through the loop without returning, then the letter must not appear in the
string, and the function returns -1.

This traversal pattern is common, and sometimes called a eureka pattern
because as soon as we find what we are looking for, we can cry ”Eureka!” and
stop looking.

As an exercise, modify the find function so that it takes a third
parameter, the index in the string where it should start looking.

7.8 Looping and counting

The following program counts the number of times the letter *a’ appears in a
string:

fruit = "banana"
count = 0
index = 0

for char in fruit:
if char == ’a’:
count = count + 1
print count

This program demonstrates another common idiom, called a counter. The
variable count is initialized to zero and then incremented each time we find an
’a’. (To increment is to increase by one; it is the opposite of decrement,
and unrelated to excrement, which is a noun.) When we exit the loop, count
contains the result: the total number of a’s.

As an exercise, encapsulate this code in a function named
countletters, and generalize it so that it accepts the string and
the letter as arguments.

As a second exercise, rewrite this function so that instead of travers-
ing the string, it uses the three-parameter version of £ind from the
previous section.

7.9 The string module

The string module contains a number of functions that are useful for manipu-
lating strings. We have to import the string module before we use the functions
in it.

7.10. CHARACTER CLASSIFICATION 71

>>> import string

The module includes a function named find that does the same thing as the
function we wrote. To call it,

>>> fruit = "banana"
>>> index = string.find(fruit, "a")
>>> print index

1

Again, we have to specify the name of the module and the name of the function.
This example demonstrates one of the benefits of modules; they help avoid
collisions between the names of built-in functions and user-defined functions. In
this case we can specify which version of find we want using the dot operator.

Actually, string.find is more general than the version we wrote. First, it
can find substrings, not just characters:

>>> string.find("banana", "na")
2

Also, it takes additional arguments that specify the index where it should start
looking:

>>> string.find("banana", "na", 3)
4

Or the index range it should search in:

>>> string.find("bob", "b", 1, 2)
-1

In this example, the search fails because the letter "b" does not appear in the
index range from 1 to 2 (not including 2).

There are many other functions in the string module that we will not explain
here. Once you know how to use a few of them, the rest are straightforward.
You can read about them in section 4.1 of the Python Library Reference, by
Guido van Rossum. That document and a wealth of other information about
Python can be found at the Python website, http://www.python.org. You have
now reached the stage in your study of Python where it will benefit you to begin
using the website as a resource.

7.10 Character classification

It is often useful to examine a character and test whether it is upper or lower
case, or whether it is a character or a digit. The string module provides several
string constants that are useful for these purposes.

The string string.lowercase contains all the letter the system considers
lower case. Similarly, string.uppercase contains all the upper case letters.
Try the following and see what you get:

72 CHAPTER 7. STRINGS

>>> print string.lowercase
>>> print string.uppercase
>>> print string.digits

We can use these constants and find to classify characters. For example, if
find (lowercase, ch) returns a value other than -1, then ch must contain a
lower case letter.

def isLower(ch):
return find(string.lowercase, ch) != -1

Alternatively, we can take advantage of the in operator, which determines
whether a character appears in a string:

def isLower(ch):
return ch in string.lowercase

As yet another alternative, we can use the comparison operator:

def isLower(ch):
return ’a’ <= ch <= ’z’:

If ch is between ’a’ and ’z’, it must be a lower case letter. Which of these do
you think will be fastest? Can you think of another reason to prefer one or the
others?

7.11 Glossary

compound data type: A data type whose values are made up of components,
or elements, that are themselves values.

traverse: To iterate through all the elements of a set performing a similar
operation on each.

index: A variable or value used to select one of the members of an ordered set,
like a character from a string.

slice:

mutable: Compound data types in Python are said to be mutable when their
elements can be assigned new values.

counter: A variable used to count something, usually initialized to zero and
then incremented.

increment: Increase the value of a variable by one.
decrement: Decrease the value of a variable by one.
concatenate: To join two operands end-to-end.

ASCII: American Standard Code for Information Interchange. A common
code for storing characters in a computer.

Chapter 8

Lists

A list is an ordered set of values, where each value is identified by an index.
The values that make up a list are called its elements. Lists are similar to
strings, which are ordered sets of characters, except that the elements of a list
can have any type.

List and strings, and anything else that behaves like an ordered set, are
called sequences. There are a number of operations that can be applied to any
kind of sequence.

8.1 List values

There are several ways to create a new list; the simplest is to enclose the elements
in square brackets:

[10, 20, 30, 40]
["spam", "bungee", "swallow"]

The first example is a list of four integers. The second is a list of three strings.
The elements of a list don’t have to have the same type. The following list
contains a string, a float, and an integer, and the last element is another list,
[10, 20].

["hello", 2.0, 5, [10, 201]
A list within another list is said to be nested.
Lists that contain consecutive integers are common, so Python provides a

simple way to create them:

>>> range(1,5)
[1’ 2, 3, 4]

73

74 CHAPTER 8. LISTS

The range function takes two arguments and returns a list that contains all the
integers from the first to the second, including the first, but not including the
second!

There are two alternate forms of range. With a single argument, it creates
a list that starts at 0:

>>> range(10)
[O’ 1, 2, 3’ 4, 5’ 6’ 7’ 8’ 9]

If there is a third argument it specifies the space between successive values,
sometimes called the step. This example counts from 1 to 10 by steps of 2:

>>> range(1, 10, 2)
(1, 3, 5, 7, 9]

Finally, there is a special list that contains no elements. It is called the empty
list and it is denoted [].

With all these ways to create lists, it would be disappointing if we couldn’t
assign list values to variables or pass lists as parameters to functions. We can.

vocabulary = ["ameliorate", "castigate", "defenestrate"]
numbers = [17, 123]

empty = []

print vocabulary, numbers, empty

[’ameliorate’, ’castigate’, ’defenestrate’] [17, 123] []

8.2 Accessing elements

The syntax for accessing the elements of a list is the same as the syntax for
accessing the characters of a string: the square bracket operator [1. The ex-
pression inside the square brackets specifies the index. Remember that the
indices start at zero.

print numbers[0]
numbers[1] = 5

The [] operator can appear anywhere in an expression. When it appears on
the left side of an assignment, it changes one of the elements in the list, so the
one-eth element of numbers, which used to be 123, is now 5.

Any expression with type int can be used as an index.

>>> numbers[3-2]

5

>>> numbers[1.0]

TypeError: sequence index must be integer

If you try to access (read or write) an element that does not exist, you will get
an IndexError.

8.3. LIST LENGTH 75

>>> numbers[2] = 5
IndexError: list assignment index out of range

Because the indices start at zero, there is no element with the index 2. If an
index has a negative value, it counts backwards starting at the end of the list.

>>> numbers[-1]

5

>>> numbers[-2]

17

>>> numbers[-3]

IndexError: list index out of range

numbers[-1] is the last element of the list, numbers[-2] is the second to last,
and numbers[-3] doesn’t exist.

One of the most common ways to index an array is with a loop variable. For
example:

horsemen = ["war", "famine", "pestiness", "death"]
i=20
while i < 4:

print horsemen[i]

i=1i+1

This while loop counts from 0 up to 4, and when the loop variable i is 4, the
condition fails and the loop terminates. Thus, the body of the loop is only
executed when i is 0, 1, 2 and 3.

Each time through the loop we use the variable i as an index into the list,
printing the ith element. This type of list traversal is very common.

8.3 List length

The function len takes a list and returns the length of the list. It is a good idea
to use this value as the upper bound of a loop, rather than a constant. That
way, if the size of the list changes, you won’t have to go through the program
changing all the loops; they will work correctly for any size list.

horsemen = ["war", "famine", "pestiness", "death"]
i=20
while i < len(horsemen) :

print horsemen[i]

i=1i+1

The last time the body of the loop gets executed, i is len(horsemen) - 1,
which is the index of the last element. When 1 is equal to 1en(horsemen), the
condition fails and the body is not executed, which is a good thing, since it
would cause an error.

76 CHAPTER 8. LISTS

Although a list can contain another list as an element, the nested list still
counts as a single element. The length of this list

[’spam!’, 1, [’Brie’, ’Roquefort’, ’Pol le Veq’]l, [1, 2, 31]

is 4.

8.4 Lists and for loops

Using a loop to traverse the elements of a list is so common that Python provides
a special operation for it, the for loop.

for VARIABLE in LIST:
BODY

This statement is equivalent to

i=0

while i < 1len(LIST):
VARIABLE = LIST[il
BODY
i=1i+1

Except that is it not necessary to use the loop variable i. Using this syntax,
the previous loop is much simpler:

for horseman in horsemen:
print horseman

Furthermore, it almost reads like English, ”For (every) horseman in (the list of)
horsemen, print (the name of the) horseman.”
Any list expression can be used in a for loop.

for fruit in ["banana", "apple", "quince"]:
print "I like to eat " + fruit + "s!"

for number in range(20):
if number % 2 ==
print number

The first example eats all the fruit in the list. The second example prints all
the prime numbers between 1 and 10 (assuming that the function is_prime is
defined somewhere). Notice that we don’t bother checking the even numbers.

8.5. LIST OPERATIONS 7

8.5 List operations

Lists support several additional operations. The + operator concatenates lists:

>>> a [1, 2, 3]
>>> b = [4, 5, 6]
>>>c=a+b

>>> print c

[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4

[o, o, 0, 0]

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

In the first example the list [0] contains a single element that is repeated four
times. In the second example, the list [1, 2, 3] is repeated three times.
The del statement removes an element from a list.

>>> a = [’one’, ’two’, ’three’]
>>> del a[1]

>>> a

[’one’, ’three’]

8.6 Slices

All of the slice operations that apply to strings also work on lists.

>>> list = [’a’, ’b’, ’c’, ’d’, ’e’]
>>> 1ist[1:3]

[’b’, ’C’]

>>> list[:4]

[;a7’ 7b3, JC)’ ’d’]

>>> list[3:]

[’d’, 7eJ]

>>> 1list[:]

[)a;’ br, e, ’d?, re?]

In addition, slice operations on lists can appear on the left hand side of an
assignment statement. This is not true with strings, because strings are im-
mutable.

The following example replaces multiple items in a list.

>>> list = [’a’, ’b’, ’C’, ’d’, ’e’]
>>> 1ist[1:3] = [’x’, ’y’]

>>> print list

[;a7, ’X’, in’ ’d’, 7e;]

78 CHAPTER 8. LISTS

You can also remove elements from a list by assigning the empty list to them.

>>> list = [’a’, ’x’, ’y’, ’d’, ’e’]
>>> 1ist[1:3] = []

>>> list

[;a7’ 7d3, Je)]

And you can add elements to a list by squeezing them into a slice with only one
element.

>>> list = [’a’, ’d’, ’e’]
>>> 1list[1:1] = [’b’, ’c’]
>>> list

[7a7, ’b’, JC7, ’d’, ;ez]

...and list is back where it began.

8.7 Objects and values

Consider the following assignments:

"banana"
a

a
b

Clearly a and b have the same value, the string "banana". But there are two
possible states that might result:

n
= "nam’ b
I_'- b > *hanann®

#— " “hamana"

In one case, a and b refer to two different ”things” that have the same value.
In the second case they refer to the same ”thing”. These ”things” have names;
they are called objects. An object is a thing that can get referred to.

You might wonder which arrangement Python actually uses. Is there an
experiment you can perform to figure out which it is?

>>> id(a)
135044008
>>> id(b)
135044008

8.8. ALIASING 79

Every object has a unique identifier; the id function returns the unique identifier
of the given object. In this case we get the same id twice, indicating that a and
b refer to the same object.

Because strings are immutable, there is no practical difference between the
two possible states. But for mutable types like lists, it matters.

When you create two lists, you get two objects:

>>>a = [1, 2, 3]
>>>b =[1, 2, 3]
>>> id(a)
135045528
>>> id(b)
135041704

So the state diagram looks like this:

—t— [127]

— | 1.2 |

a and b have the same value, but they do no refer to the same object.

8.8 Aliasing

Variables contain references to objects. If you assign one variable to another, it
means that both variables refer to the same object.

>>> a [1, 2, 3]
>>> b = a

In this case, the state diagram looks like this:

Because the same list has two different names, a and b, we say that it is
aliased. Changes made with one alias are visible to the other.

>>> b[0] =5
>>> print a
[5, 2, 3]

80 CHAPTER 8. LISTS

Although this behavior can be useful, it is sometimes unexpected or undesirable.
For example, if we want to modify a list and also keep a copy of the original,
we need to be able to make a copy of the list itself, not just its reference. This
process is sometimes called cloning, to avoid the ambiguity of the word ” copy.”

8.9 Cloning lists

There is no built-in Python command to clone lists, but we can get the same
effect using slices.

>>> a = [1, 2, 3]
>>> b = []

>>> bl[:] = al:]
>>> print b

[1, 2, 3]

We start by initializing b to the empty list. Then we take a slice of a that
consists of the whole list, and use it to replace a slice of b.

As an exercise, draw o state diagram of the result.
Now we are free to make changes to b without worrying about a:

>>> b[0] =5
>>> print a
[1, 2, 3]

8.10 List parameters

When you pass a list as an argument, you are passing a reference to the list.
For example, the function head takes a list as a parameter and returns the first
element.

def head(list):
return list[0]

Here’s how it is used.

>>> numbers = [1,2,3]
>>> head (numbers)
1

In this case, the parameter 1ist is an alias for the variable numbers. If the
function modifies a list passed as a parameter, the caller will see the change.
delete head removes the first element from a list.

8.11. NESTED LISTS 81

def delete_head(list):
del 1list[0]

Here’s how delete_head is used.

>>> numbers = [1,2,3]
>>> delete_head (numbers)
>>> print numbers

[2, 3]

If a function returns a list, it returns a reference to the list. tail returns a list
that contains all but the first element of the given list.

def tail(list):
return list[1:]

Here’s how tail is used:
>>> numbers = [1,2,3]
>>> rest = tail (numbers)

>>> print rest
>>> [2, 3]

In this case the original list is unmodified. You might wonder whether changes
to rest affect numbers. Try it and find out.

As an ezercise, write a function called clone_list that takes a list
as a parameter and that returns a cloned list.

8.11 Nested lists
We have already seen an example of a nested list:
>>> list = ["hello", 2.0, 5, [10, 20]]

The three-eth element of this list is itself a list. If we print ist[3], we get [10,
20]. To extract the elements of the nested list, we can proceed in two steps:

>>> elt = list[3]
>>> elt[0]
10

Or we can combine them:

>>> 1list[3][1]
20

82 CHAPTER 8. LISTS

It is common to use nested lists to represent matrices. For example, the matrix

S -
o LA b
v

might be represented
>>> matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 911

That is, matrix is a list with three elements, where each element is a row of the
matrix. We can select an entire row from the matrix in the usual way.

>>> matrix[1]
[4, 5, 6]

Or we can get a single element from the matrix using the double-index form.

>>> matrix[1] [1]
5

The first index selects the row and the second index selects the column. Al-
though this way of representing matrices is common, it is not the only possibility.
A small variation is to use a list of columns instead of a list of rows. In the next
chapter we will see a more radical alternative using a dictionary.

8.12 Glossary

list: A named collection of objects, where each object is identified by an index.
index: An integer variable or value used to indicate an element of a list.

sequence: Any of the data types which consist of an ordered set of elements,
with each element identified by an index. The three sequence types in
Python are strings, lists, and tuples.

element: One of the values in a list (or other sequence). The [] operator
selects elements of a list.

nested list: A list that is an element of another list.
list traversal: The sequential accessing of each element in a list.
object: A thing that a variable can refer to.

aliases: Multiple variables that contain references to the same object.

Chapter 9

Histograms

9.1 Random numbers

Most computer programs do the same thing every time they are executed, so
they are said to be deterministic. Usually, determinism is a good thing, since
we expect the same calculation to yield the same result. For some applications,
though, we would like the computer to be unpredictable. Games are an obvious
example, but there are many more.

Making a program truly nondeterministic turns out to be not so easy, but
there are ways to make it at least seem nondeterministic. One of them is to gen-
erate random numbers and use them to determine the outcome of the program.
Python provides a built-in function that generates pseudorandom numbers,
which are not truly random in the mathematical sense, but for our purposes,
they will do.

The random module contains a function called random that returns a float
between 0.0 and 1.0. Each time you call random you get a different randomly-
generated number. To see a sample, run this loop:

import random
for i in range(10):
x = random.random()

print x

To generate a random float between 0.0 and an upper bound like high, you
can multiply x by high.

As an exercise, generate a random number between low and high.

As an additional exercise, generate a random integer between low
and high.

83

84 CHAPTER 9. HISTOGRAMS

9.2 Statistics

The numbers generated by random are supposed to be distributed uniformly. If
you have taken statistics, you know what that means. Among other things, it
means that if we divide the range of possible values into equal sized ”buckets,”
and count the number of times a random value falls in each bucket, each bucket
should get the same number of hits (eventually).

In the next few sections, we will write programs that generate a sequence of
random numbers and check whether this property holds true.

9.3 List of random numbers

The first step is to generate a large number of random values and store them
in a list. By ”large number,” of course, we mean 8. It’s always a good idea to
start with a manageable number, to help with debugging, and then increase it
later.

The following function takes a single argument, the size of the list. It creates
a new list of Os and then replaces the elements with random values. The return
value is a reference to the new list.

def random_list(n):
s = [0]*n
for i in range(n):
s[i] = random()
return s

To test this function, it is convenient to have a function that prints the list one
element per line.

def print_list(s):
for elt in s:
print elt

The following code generates a list and prints it:

num_values = 8
s = random_list (num_values)
print_list(s)

When we ran this code, the output was

0.15156642489

.498048560109
.810894847068
.360371157682
.275119183077
.328578797631
.759199803101
.800367163582

[eNeNeoNeoNeoNeoNel

9.4. COUNTING 85

which is pretty random-looking. Your results may differ.

If these numbers are really random, we expect half of them to be greater
than 0.5 and half to be less. In fact, three are greater than 0.5, so that’s a little
low.

If we divide the range into four buckets—from 0.0 to 0.25, 0.25 to 0.5, 0.5 to
0.75, and 0.75 to 1.0-we expect 2 values to fall in each bucket. In fact, we get
1, 4, 0, 3. Again, not exactly what we expected.

Do these results mean the values are not really random? It’s hard to tell.
With so few values, the chances are slim that we would get exactly what we
expect. But as the number of values increases, the outcome should be more
predictable.

To test this theory, we’ll write some programs that divide the range into
buckets and count the number of values in each.

9.4 Counting

A good approach to problems like this is to think of simple functions that are
easy to write, and that might turn out to be useful. Then you can combine them
into a solution. Of course, it is not easy to know ahead of time which functions
are likely to be useful, but as you gain experience you will have a better idea.

Also, it is not always obvious what sort of things are easy to write, but a
good approach is to look for subproblems that fit a pattern you have seen before.

Back in Section 7.7 we looked at a loop that traversed a string and counted
the number of times a given letter appeared. You can think of this program
as an example of a pattern called ”traverse and count.” The elements of this
pattern are:

e A sequence of elements, like a list or a string, that can be traversed.
e A test that you can apply to each element in the sequence.
e A counter that keeps track of how many elements pass the test.

In this case, we have a function in mind called in_bucket that counts the
number of elements in a list that fall in a given bucket. The arguments are the
list and two numbers that specify the lower and upper bounds of the bucket.

def in_bucket(list, low, high):
count = 0
for elt in list:
if low <= elt < high:
count = count + 1
return count

We haven’t been very careful about whether something equal to low or high

falls in the bucket, but you can see from the code that low is in and high is out.

That should prevent us from counting any elements in more than one bucket.
Now, to divide the range into two pieces, we could write

86

low = in_bucket(a, 0.0, 0.5)
high = in_bucket(a, 0.5, 1)

To divide it into four pieces:

bucket1
bucket?2
bucket3
bucket4

You might

in_bucket (a,
in_bucket(a,
in_bucket(a,
in_bucket(a,

0.0, 0.25)
0.25, 0.5)
0.5, 0.75)
0.75, 1.0)

CHAPTER 9. HISTOGRAMS

want to try out this program using a larger num values. As

num _values increases, are the numbers in each bucket leveling off?

9.5 Many buckets

Of course, as the number of buckets increases, we don’t want to have to rewrite
the program, especially since the code is getting big and repetitive. Any time
you find yourself doing something more than a few times, you should be looking

for a way to automate it.

Let’s say that we wanted 8 buckets. The width of each bucket would be
one eighth of the range, which is 0.125. To count the number of values in each
bucket, we need to be able to generate the bounds of each bucket automatically,
and we need to have some place to store the 8 counts.

We can solve the first problem with a loop:

num_buckets = 8

bucket_width = 1.0 / num_buckets
for i in range(num_buckets):

low = i * bucket_width

high = low + bucket_width
print low, "to",

high

This code uses the loop variable i to multiply by the bucket width, in order to
find the low end of each bucket. The output of this loop is:

0
0
0
0.
0
0
0
0

.0 to 0.125
.125 to 0.25
.25 to 0.375
375 to 0.5
.5 to 0.625
.625 to 0.75
.75 to 0.875
.875 to 1.0

You can confirm that each bucket is the same width, that they don’t overlap,
and that they cover the whole range from 0.0 to 1.0.

9.6. A SINGLE-PASS SOLUTION 87

Now we just need a way to store 8 integers, preferably so we can use an
index to access each one. Immediately, you should be thinking ”list!”

We have to create the list outside the loop (because we only want to do it
once). Inside the loop we’ll call in_bucket repeatedly and put the results in the
list:

list = random_list(1000)

num_buckets = 8
buckets = [0] * num_buckets
bucket_width = 1.0 / num_buckets
for i in range(num_buckets):
low = i * bucket_width
high = low + bucket_width
#print low, "to", high
buckets[i] = in_bucket(list, low, high)
print buckets

This code works. We cranked the number of values up to 1000 and divided the
range into 8 buckets. The output was:

[138, 124, 128, 118, 130, 117, 114, 131]

which is pretty close to 125 in each bucket. At least, it’s close enough that
we can believe the random number generator is working.

9.6 A single-pass solution

Although this code works, it is not as efficient as it could be. Every time it calls
in_bucket, it traverses the entire list. As the number of buckets increases, that
gets to be a lot of traversals.

It would be better to make a single pass through the list and computer, for
each value, the index of the bucket it falls in. Then we could increment the
appropriate counter.

In the previous section, we took an index, i, and multiplied it by the
bucketWidth in order to find the lower bound of a given bucket. Now we
want to take a value in the range 0.0 to 1.0, and find the index of the bucket
where it falls.

Since this problem is the inverse of the previous problem we might guess
that we should divide by the bucket_width instead of multiplying. That guess
is correct.

Remember that since bucketwidth = 1.0 / num buckets, dividing by
bucket_width is the same as multiplying by num buckets. If we take a num-
ber in the range 0.0 to 1.0 and multiply by num buckets, we get a number in
the range from 0.0 to numBuckets. If we round that number to the next lower
integer, we get exactly what we are looking for—the index of the appropriate
bucket.

88 CHAPTER 9. HISTOGRAMS

list = random_list(1000)

num_buckets = 8

buckets = [0] * num_buckets

for i in list:
index = int(i * num_buckets)
buckets[index] = buckets[index] + 1

Here we are using the int function to convert a floating point number to an
integer.

Is it possible for this calculation to produce an index that is out of range
(either negative or greater than len(buckets)-1)?

A list like buckets, that contains counts of the number of values in each
range, is called a histogram.

As an exercise, write a function called histogram that takes an array
and a number of buckets as parameters, and that returns a histogram
with the given number of buckets.

9.7 Glossary
deterministic: A program that does the same thing every time it is called.

pseudorandom: A sequence of numbers that appear to be random, but which
are actually the product of a deterministic computation.

histogram: A list of integers where each integer counts the number of values
that fall into a certain range.

Chapter 10

Tuples and dictionaries

10.1 Mutability and tuples

We have seen two compound types: strings, which are made up of characters,
and lists, which are made up of elements of any type. One of the differences
we noted is that you can modify the elements of a list but you cannot modify
the characters in a string. In other words, strings are immutable and lists are
mutable.

There is another type in Python, called a tuple, that is similar to a list
except that it is immutable. Syntactically, a tuple is a comma-separated list of
values:

>>> mytuple = ’a’, ’b’, ’c’, ’d’, ’e’
Although it is not necessary, it is conventional to enclose tuples in parentheses.
>>> mytuple = (’a’, ’b’, ’c¢’, ’d’, ’e’)
If you create a tuple with a a single element, you must include a final comma:
>>> t1 = (Pa’,)
>>> type(tl)
<type ’tuple’>
Without the comma, Python treats (’a’) as a string in parentheses.
>>> t2 = (’a’)
>>> type(t2)
<type ’string’>

Syntax aside, the operations on tuples are the same as the operations on lists:

89

90 CHAPTER 10. TUPLES AND DICTIONARIES

>>> mylist = [’a’, ’b’, ’c¢’, ’d’, ’e’]
>>> mylist[0] #index

3a,

>>> mytuple[0]

Ja”

>>> mylist[1:3] #slice
[’b’, ’C’]

>>> mytuple[1:3]

(’b’, ’C’)

But if we try to modify one of the elements of the tuple we get an error:

>>> mylist[1] = ’A° # assign A’ to the first element of list
>>> mytuple[1] = A’ # try to assign ’A’ to the 1st element of tuple
TypeError: object doesn’t support item assignment

Of course, even if we can’t modify the elements of a tuple, we can always replace
a tuple with a different tuple:

>>> mytuple = (°A’,) + mytuple[1:]
>>> mytuple
(’A’, 7b3, JC)’ ’d’,)e;)

10.2 Multiple assignment

Once in a while it is useful to swap the values of two variables. To do this with
conventional assignment statements, we have to use a temporary variable. For
example, to swap a and b:

>>> temp = a
>>>a =>
>>> b = temp

If you have to do things like this often, this approach is cumbersome. Python
provides a form of multiple assignment that solves this problem neatly:

>>> a, b=">b, a

The left side is a tuple of variables; the right side is a tuple of values. Each
value is assigned to its respective variable. The interesting thing is that the
assignments are performed simultaneously, not one at a time. This feature
makes multiple assignment quite versatile.

The number of variables and the number of values have to be the same:

>>a, b, c,d=1, 2, 3
ValueError: unpack tuple of wrong size

10.3. TUPLES AS RETURN VALUES 91

10.3 Tuples as return values

Function can return tuples as return values. For example, we could write a
function that takes two parameters and swaps them:

def swap(x, y):
return y, X

When we call this function we have to assign the return value to a tuple with
two variables.

a, b = swap(a, b)

In this case there is no great advantage in making swap a function. In fact,
there is a danger in trying to encapsulate swap, which is the following tempting
mistake:

def swap(x, y): # incorrect version
X, y=9, X

If we call this function like this,
swap(a, b)

then a and x are aliases for the same value. Changing x inside swap makes
x refer to a different value, but it has no effect on a in _main__. Similarly,
changing y has no effect on b.

As an exercise, draw a state diagram for this function so that you
can see why it does not work as desired.

10.4 Dictionaries

The compound types we have looked at—strings, lists and tuples—use integers
as indices. If you try to use any other type as an index you get an error.

Dictionaries are similar to other compound types except that they can use
any immutable type as an index. As an example, we will create a dictionary
to translate English words into Spanish. For this dictionary, the indices are
strings.

One way to create a dictionary is to start with the empty dictionary and
add elements. The empty dictionary is denoted {}:

>>> eng2sp = {2}
>>> eng2sp[’one’] = ’uno’
>>> eng2sp[’two’] = ’dos’

The first assignment creates a dictionary named eng2sp; the other assignments
add new elements to the dictionary. We can print the current value of the
dictionary in the usual way:

92 CHAPTER 10. TUPLES AND DICTIONARIES

>>> print eng2sp
{’one’: ’uno’, ’two’: ’dos’}

The elements of a dictionary appear in a comma-separated list. Each entry
contains an index and a value separated by a colon. In a dictionary the indices
are called keys, so the elements are called key-value pairs.

Another way to create a dictionary is to provide a list of key-value pairs
using the same syntax as the previous output:

>>> eng2sp = {’one’: ’uno’, ’two’: ’dos’, ’three’: ’tres’}
If we print the value of eng2sp again we get a surprise:

>>> print eng2sp
{’one’: ’uno’, ’three’: ’tres’, ’two’: ’dos’}

The key-value pairs are not in order! Fortunately, we have no reason to care
about the order, since we never index the elements of a dictionary with integer
indices. Instead, we use the keys to look up the corresponding values:

>>> print eng2sp[’two’]
’dos’

The key ’two’ yields the value ’dos’ even though it appears in the third key-
value pair.
10.5 Dictionary operations

The del statement removes a key-value pair from a dictionary. For example,
the following dictionary contains the names of various fruits and the number of
each fruit in stock:

>>> inventory = {’apples’: 430, ’bananas’: 312, ’oranges’: 525, ’pears’:

>>> print inventory
{’oranges’: 525, ’apples’: 430, ’pears’: 217, ’bananas’: 312}

If someone buys all the pears, we can remove the entry from the dictionary:

>>> del inventory[’pears’]
>>> print inventory
{’oranges’: 525, ’apples’: 430, ’bananas’: 312}

Or, if we’re expecting more pears soon, we might just change the inventory
associated with pears:

>>> inventory[’pears’] = 0
>>> print inventory
{’oranges’: 525, ’apples’: 430, ’pears’: 0, ’bananas’: 312}

217}

10.6. DICTIONARY METHODS 93

The len function also works on dictionaries; it returns the number of key-value
pairs.

>>> len(inventory)
4

10.6 Dictionary methods

A method is similar to a function—it takes parameters and returns a value—
but the syntax is different. For example, the keys method takes a dictionary
and returns a list of the keys that appear, but instead of the function syntax
keys (eng2sp), we use the method syntax eng2sp.keys().

The dot operator specifies the name of the function, keys, and the name of
the object to apply the function to, eng2sp. The parentheses indicate that this
method takes no arguments. A method call is called an invocation; in this
case we would say that we are invoking keys on the object eng2sp.

The values method is similar; it returns a list of the items in the dictionary:

>>> eng2sp.values ()
[’uno’, ’tres’, ’dos’]

If a method takes an argument, it uses the same syntax as a function call. For
example, the method has key takes a key and returns true if the key appears
is in the dictionary and false if it doesn’t.

>>> eng2sp.has_key(’one’)
1
>>> eng2sp.has_key(’deux’)
0

If you try to invoke a method without specifying an object, you get an error.
In this case the error message is not very helpful:

>>> has_key(’one’)
NameError: has_key

10.7 Aliasing and copying

Because dictionaries are mutable, we need to be aware of aliasing. If two vari-
ables refer to the same object, they are aliases; any changes to one affect the
other.

If you want to modify a dictionary and keep a copy of the original, you can
use the copy method. For example, opposites is a dictionary that contains
pairs of opposites:

94 CHAPTER 10. TUPLES AND DICTIONARIES

>>> opposites = {’up’: ’down’, ’right’: ’wrong’, ’true’: ’false’}
>>> alias = opposites
>>> copy = opposites.copy()

alias and opposites refer to the same object; copy refers to a fresh copy of
the same dictionary. If we modify alias, opposites sees the change:

>>> alias[’right’] = ’left’
>>> opposites[’right’]
left’

If we modify copy, opposites is unchanged:
>>> copy[’right’] = ’privilege’
>>> opposites[’right’]
’left’

10.8 Sparse matrices

In section 8.11 we used a list of lists to represent a matrix. For a matrix with
mostly non-zero values, that is a good choice, but consider a sparse matrix like

= O O O o
O = B = O
= o o &
Lol = T = T = R]
o & &5 = o

The list representation contains a lot of zeroes:
matrix = [[0,0,0,1,0],[0,0,0,0,0],[0,2,0,0,0],[0,0,0,0,0],[0,0,0,3,0]]

An alternative is to use a dictionary along with the get method. For the keys
we can use tuples that contains the row and column numbers. Here is the
dictionary representation of the same matrix:

matrix = {(0,3): 1, (2, 1): 2, (4, 3): 3}

There are only three key-value pairs, one for each non-zero element of the matrix.
Each key is a tuple and each value is an integer. The reason we used tuples as
keys, rather than lists, is that the keys have to be immutable.

To access an element of the matrix, we could use the [] operator:

matrix[0,3]
1

10.9. HINTS 95

The only problem is that if we specify an element that is zero, we get an error,
because there is no entry in the dictionary with that key.

>>> matrix[1,3]
KeyError: (1, 3)

The get method solves this problem.

>>> matrix.get((0,3), 0)
1

The first argument is the key; the second argument is the value we would like
get to return if the key is not in the dictionary.

>>> matrix.get((1,3), 0)
0

10.9 Hints

If you played around with the fibonacci function from Section 5.8, you might
have noticed that the bigger the argument you provide, the longer the function
takes to run. Furthermore, the run time increases very quickly. On our machine,
fibonacci(20) finishes instantly, fibonacci(30) takes about a second, and
fibonacci (40) takes roughly forever.

To understand why it takes so long, consider this call graph for

fibonacci(4).
A=A E] |
fiboacei (1)
= y I ..

| fi honace |1|| I fikonacei i] | I libamaca (11 | | [i e II:II

"

I fiboracci] 1) | | [HETETES] I|.II

The call graph shows each function and the function calls it makes. At the
top of the graph, fibonacci(4) calls fibonacci(3) and fibonacci(2). In
turn, fibonacci(3) calls fibonacci(2) and fibonacci(1), and so on.

Count how many times fibonacci(0) and fibonacci(1) are called. This
is an inefficient solution to the problem, and it gets far worse as the argument
gets bigger.

A good solution is to keep track of values that have already been computed
by storing them in a dictionary. A previously computed value that is stored for
later use is called a hint, and the following code makes extensive use of them:

96 CHAPTER 10. TUPLES AND DICTIONARIES

previous = {0:1, 1:1}
def fibonacci(n):
if previous.has_key(n):
return previous[n]
else:
new_value = fib(n-1) + fib(n-2)
previous[n] = new_value
return new_value

The dictionary named previous keeps track of the Fibonacci numbers we al-
ready know. At the beginning of the program we start with only two pairs: 0
maps to 1 and 1 maps to 1.

Any time fibonacci is called, it checks the dictionary to see if it contains
a precomputed result, sometimes called a hint or a memo. If it’s there, we can
return the value immediately without making any more recursive calls. If not,
we have to compute the new value. Once we get it, we add it to the dictionary.

Using this version of fibonacci, my machine can compute fibonacci (40)
in an eyeblink. But when I try to compute fibonacci(50), I get a different
problem

>>> fibonacci(50)
OverflowError: integer addition

The answer, as we’ll see in a minute, is 20,365,011,074. The problem is that
this number is too big to fit into a Python integer. It ”overflows”. Fortunately,
there is an easy solution for this problem.

10.10 Long integers

Python provides a type called long int that can handle any size integer. There
are two ways to create a long int value. One is to write an integer with a capital
L at the end.

>>> type(1L)
<type ’long int’>

The other is to use the long function to convert a value to a long int. long
can accept any numerical type, and even strings of digits:

>>> long(1)

1L
>>> long(3.9)
3L
>>> long(’577)
57L

All the math operations work on long ints, so we don’t have to do much to
make fibonacci generate long ints.

10.11. COUNTING LETTERS 97

>>> previous = {0:1L, 1:1L}
>>> fibonacci(50)
20365011074L

Just by changing the initial contents of previous, we change the behavior of
fibonacci. The first two numbers in the sequence are long ints, so all the
subsequent numbers in the sequence are, too.

As an exercise, convert factorial so that it produces a long int
as a result.

10.11 Counting letters

In Chapter 7 we wrote a function that counted the number of occurrences of a
letter in a string. A more general version of this problem is to form a histogram
of the letters in the string; that is, for every letter we would like to know how
many times it appears.

One reason such a histogram might be useful is for compressing a text file.
Because different letters appear with different frequencies, we can compress a
file by using short codes for common letters and longer codes for less frequent
letters.

Dictionaries provide an elegant way to generate a histogram:

>>> letterCounts = {}
>>> for letter in "Mississippi":
letterCounts[letter] = letterCounts.get (letter, 0) + 1

>>> letterCounts
{M: 1, ’s’: 4, ’p’: 2, ’i’: 4}
>>>

Initially we have an empty dictionary. For each letter in the string, we find
the current count (possibly zero) and increment it. At the end, the dictionary
contains pairs of letters and their frequencies.

It might more appealing to display the histogram in alphabetical order. We
can use the sort method.

>>> letterItems = letterCounts.items()
>>> letterItems.sort()

>>> print letterItems

(em, 1, Ci’, 49, Cp’, 2), s, 4]
>>>

We have seen the items method before, but sort is the first method we have
seen that applies to lists. There are several other list methods, including append,
extend and reverse. You should consult the Python documentation for more
details.

98 CHAPTER 10. TUPLES AND DICTIONARIES

10.12 Glossary

mutable type: A data type whose elements can be modified. All mutable
types are compound types. Simple types such as integers and floats are
not mutable. Lists and dictionaries are mutable data types, strings and
tuples are not.

immutable type: A type whose elements can not be modified. Assignments
to elements or slices of immutable types will result in an error.

tuple: A sequence type that is similar to a list except that it is immutable.
Tuples can be used wherever an immutable type is required, such as a key
in a dictionary.

multiple assignment: Assignment to all the elements in a tuple using a single
assignment statement. Multiple assignment occures in parallel rather than
in sequence, making it useful for swapping values.

dictionary: A collection of key-value pairs that maps from keys to pairs. The
keys can be any immutable type, and the values can be any type.

hint: Temporary storage of a precomputed value to avoid redundant computa-
tion.

method: A kind of function that is called with a different syntax and invoked
“on” an object.

invoke: To call a method.

Chapter 11

Classes and objects

11.1 User-defined compound types

Having used some of Python’s built-in types, we are ready to create a user-
defined type: the Point.

Consider the concept of a mathematical point. In two dimensions, a point
is two numbers (coordinates) that we treat collectively as a single object. In
mathematical notation, points are often written in parentheses, with a comma
separating the coordinates. For example, (0, 0) represents the origin, and (=,
y) represents the point z units to the right and y units up from the origin.

A natural way to represent a point in Python is with two floating point
values. The question, then, is how to group these two values into a compound
object. The answer is to define a new user-defined compound type, which is
called a class.

Here’s what a class definition looks like.

class Point:
pass

class definitions can appear anywhere in a program, but they are usually near
the beginning (after the import statements). The syntax for creating a class
definition is another example of the compound statements that we discussed in
section 4.3.

This definition simply creates a new type called Point. The second line is
a pass statement that has no effect; it is only necessary because a compound
statement must have something in its body.

Next we would like to create an object with type Point. Creating a new
member of a class is called instantiation and the new object is called an
instance of the class. To create a new instance:

blank = Point()

99

100 CHAPTER 11. CLASSES AND OBJECTS

The variable blank gets assigned a reference to a new Point object. The paren-
theses indicate that Point is the name of a function as well as the name of the
class. A function like Point that creates new objects is called a constructor.

11.2 Instance variables

We can add new components to an instance using dot notation:

3.0
4.0

>>> blank.x
>>> blank.y

This syntax is similar to the syntax for selecting a variable from a module,

like math.pi or string.uppercase. In this case, though, we are selecting a

component from an instance. These components are called instance variables.
The following state diagram shows the result of these assignments:

hlank

The value of blank is a reference to the new object, which contains two
instance variables. Each instance variable refers to a floating-point number.
We can read the values of an instance variable using the same syntax:

>>> print blank.y
4.0

>>> x = blank.x
>>> print x

3.0

The expression blank.x means “go to the object blank refers to and get the
value of x.” In this case we assign that value to a local variable named x.
There is no conflict between the local variable x and the instance variable x.
The purpose of dot notation is to identify which variable you are referring to
unambiguously.

You can use dot notation as part of any expression, so the following are legal.

print >’ + str(blank.x) + ’, ’> + str(blank.y) + ’)°
distance = blank.x * blank.x + blank.y * blank.y

The first line outputs (3.0, 4.0); the second line calculates the value 25.
Finally, you might be tempted to print the value of blank itself.

>>> print blank
<__main__.Point instance at 80f8e70>

11.3. INSTANCES AS PARAMETERS 101

This indicates that blank is an instance of the Point class and it was defined
in _main__. 80f8e70 is the unique identifier for this object in hexadecimal.

As an exercise, translate it into decimal and compare it with the
result of the id function.

11.3 Instances as parameters
You can pass an instance as a parameter in the usual way. For example:

def printPoint(p):
print ’(C’ + str(p.x) + 7, ’ + str(p.y) + ’)’

printPoint takes a point as an argument and outputs it in the standard format.
If you call printPoint(blank), it will output (3, 4).

As an exercise, rewrite the distance function from Section 5.2 so
that it takes two Points as parameters instead of four numeric val-
ues.

11.4 Rectangles

Now let’s say that we want to create a class to represent a rectangle. The ques-
tion is, what information do we have to provide in order to specify a rectangle?
To keep things simple let’s assume that the rectangle will be oriented vertically
or horizontally, never at an angle.

There are a few possibilities: we could specify the center of the rectangle
(two coordinates) and its size (width and height), or we could specify one of the
corners and the size, or we could specify two opposing corners. A conventional
choice is to specify the upper left corner of the rectangle and the size.

Again, we’ll define a new class:

class Rectangle:
pass

And instantiate it:

box = Rectangle()
box.width = 100.0
box.height = 200.0

This code creates a new Rectangle object and two floating-point instance vari-
ables. To specify the upper left corner we can create an object within an object!

box.corner = Point()
x = 0.0;
box.corner.y = 0.0;

box.corner.

102 CHAPTER 11. CLASSES AND OBJECTS

The dot operator composes. The expression box.corner.x means ”go to the
object box refers to and select the component named corner; then go to that
object and select the component named x.”

The figure shows the state of this object.

b

T

wdh: 10

11.5 Instances as return values

Functions can return instances. For example, findCenter takes a Rectangle
as an argument and returns a Point that contains the coordinates of the center
of the Rectangle:

def findCenter (box):
p = Point()
pP.-x = box.corner.x + box.width/2.0
P.y = box.corner.y + box.height/2.0
return p

To call this function, we pass a box as an argument and assign the result to a
variable:

>>> center = findCenter (box)
>>> printPoint (center)

The output of this program is (50, 100).

11.6 Glossary

class: A user-defined compound type. A class can also be thought of as a
template for the objects that are instances of it.

pass: A Python statement which essentially says ”do nothing”. It is used in
the body of compound statements when no action is desired but syntax
rules require that a statement be present.

instantiate: To create an instance of a class.

11.6. GLOSSARY 103

instance: An object that belongs to a class.

object: “Object” is one of those fundemental terms that are difficult to define.
Intuitively, an object models things (objects) in the real world. It has
form and it has behavior. The form in a Python object consists in the
data values that are part of the object. The instance variables discussed
in this chapter are examples of this. The behavior of a Python object is
determined by the functions or methods which are part of that object.
We will first look at methods in Chapter 13. All instances of classes in
Python are objects, but not all objects are instances of classes. Python’s
built-in types are not classes, yet all values with these types are properly
called objects.

constructor: A method which is automatically invoked when an object of that
class is instantiated.

instance variable: One of the named data items that make up an instance.

104 CHAPTER 11. CLASSES AND OBJECTS

Chapter 12

Classes and functions

12.1 Time

As a second example of a user-defined object, we will define a class called Time
that records the time of day. Again, the class definition looks like this:

class Time:
pass

We can now create a new Time object as we did before, and create instance
variables to contain an hours, minutes and seconds:

time = Time()
time.hours = 11
time.minutes = 59
time.seconds = 30

The state diagram for this object looks like this:

111

51T Il

minugs 5

sz il

As an exercise, write a function printTime that takes a Time object
as an argument and prints it in the form: hours:minutes:seconds.

As a second exercise, write a boolean function after that takes two

Times, t1 and t2 as arguments and returns true (1) if t1 follows
t2 chronologically, and false (0) otherwise.

105

106 CHAPTER 12. CLASSES AND FUNCTIONS

12.2 Pure functions

In the next few sections we will write several versions of a function called
addTime that calculates the sum of two Times. They serve as examples of two
kinds of functions: pure functions and modifiers. Also, the approach we take
to writing these functions demonstrates once again the method of programming
called incremental development.

In incremental development, we often start with a rough draft of a function
that is syntactically correct, and that does something almost right, but that is
not complete. Here is a rough version of addTime:

def addTime(t1l, t2):
sum = Time()
sum.hours = tl.hours + t2.hours
sum.minutes = tl.minutes + t2.minutes
sum.seconds = tl.seconds + t2.seconds
return sum

The function creates a new Time object, initializes its instance variables, and
returns a reference to the new object. We would say that this is a pure function
because it does not modify any of the objects passed to it as parameters, and
it has no side-effects like printing something or getting user input.

Here is an example of how to use this function. We’ll create two Time
objects: currentTime, which contains the current time and breadTime, which
contains the amount of time it takes for a breadmaker to make bread. Then
we’ll use addTime to figure out when the bread will be done.

>>> currentTime = Time()
>>> currentTime.hours = 9
>>> currentTime.minutes
>>> currentTime.seconds

14
30

>>> breadTime = Time()

>>> breadTime.hours = 3
>>> breadTime.minutes = 35
>>> breadTime.seconds = 0

>>> doneTime = addTime(currentTime, breadTime)
>>> printTime(doneTime)

The output of this program is 12:49:30, which is correct. On the other hand,
there are cases where the result is not correct. Can you think of one?

The problem is that this function does not deal with cases where the number
of seconds or minutes adds up to more than 60. When that happens we have to
?carry” the extra seconds into the minutes column, or extra minutes into the
hours column.

Here’s a second, corrected version of this function.

12.3. MODIFIERS 107

def addTime(t1l, t2):
sum = Time()
sum.hours = tl.hours + t2.hours
sum.minutes = tl.minutes + t2.minutes
sum.seconds = tl.seconds + t2.seconds

if sum.seconds >= 60:
sum.seconds = sum.seconds - 60
sum.minutes = sum.minutes + 1

if sum.minutes >= 60:
sum.minutes = sum.minutes - 60
sum.hours = sum.hours + 1

return sum

Although it’s correct, it’s starting to get big. A little later, we will suggest an
alternate approach to this problem that will be much shorter.

12.3 Modifiers

There are times when it is useful for a function to modify one or more of the
objects it gets as parameters. Usually the caller keeps a reference to the objects
it passes, so any changes the function makes are visible to the caller. Functions
that work this way are called modifiers.

A useful function that would be written most naturally as a modifier is
increment, which adds a given number of seconds to a Time object. Again, a
rough draft of this function looks like:

def increment(time, seconds):
time.seconds = time.seconds + seconds

if time.seconds >= 60:
time.seconds = time.seconds - 60
time.minutes = time.minutes + 1

if time.minutes >= 60:
time.minutes = time.minutes - 60
time.hours = time.hours + 1

The first line performs the basic operation; the remainder deals with the special
cases we saw before.

Is this function correct? What happens if the argument secs is much greater
than 60?7 In that case, it is not enough to subtract 60 once; we have to keep doing
it until seconds is below 60. We can do that by replacing the if statements
with while statements:

108 CHAPTER 12. CLASSES AND FUNCTIONS

def increment(time, secs):
time.seconds = time.seconds + secs

while time.seconds >= 60:
time.seconds = time.seconds - 60
time.minutes = time.minutes + 1

while time.minutes >= 60:
time.minutes = time.minutes - 60
time.hours = time.hours + 1

This function is now correct, although it is not the most efficient solution.
As an exercise, rewrite it so that it doesn’t contain any loops.

As a second exercise, rewrite increment as a pure function and write
function calls to both versions.

12.4 Which is better?

Anything that can be done with modifiers can also be done with pure functions.
In fact, there are programming languages that only allow pure functions. Some
programmers believe that programs that use pure functions are faster to develop
and less error-prone than programs that use modifiers. Nevertheless, there are
times when modifiers are convenient, and cases where functional programs are
less efficient.

In general, we recommend that you write pure functions whenever it is rea-
sonable to do so, and resort to modifiers only if there is a compelling advantage.
This approach might be called a functional programming style.

12.5 Incremental development versus planning

In this chapter we have demonstrated an approach to program development we
refer to as incremental development. In each case, we wrote a rough draft
(or prototype) that performed the basic calculation, and then tested it on a few
cases, correcting flaws as we found them.

Although this approach can be effective, it can lead to code that is unnec-
essarily complicated—since it deals with many special cases—and unreliable—
since it is hard to know if you have found all the errors.

An alternative is high-level planning, in which a little insight into the prob-
lem can make the programming much easier. In this case the insight is that
a Time is really a three-digit number in base 60! The second component is
the ”ones column,” the minute component is the ”60’s column”, and the hour
component is the ”3600’s column.”

When we wrote addTime and increment, we were effectively doing addition
in base 60, which is why we had to ”carry” from one column to the next.

12.6. GENERALIZATION 109

Thus an alternate approach to the whole problem is to convert each Time
object into a single integer and take advantage of the fact that the computer
already knows how to do arithmetic with ints. Here is a function that converts
a Time into an int.

def convertToSeconds(t):
minutes = t.hours * 60 + t.minutes
seconds = minutes * 60 + t.seconds
return seconds

Now all we need is a way to convert from a int to a Time.

def makeTime(secs):
time = Time()
time.hours = int(secs / 3600)
secs = secs - time.hours * 3600
time.minutes = int(secs / 60)
secs = secs - time.minutes * 60
time.seconds = secs
return time

You might have to think a bit to convince yourself that the technique we are us-
ing to convert from one base to another is correct. Assuming you are convinced,
we can use these functions to rewrite addTime:

def addTime(t1l, t2):
seconds = convertToSeconds(tl) + convertToSeconds (t2)
return makeTime (seconds)

This is much shorter than the original version, and it is much easier to demon-
strate that it is correct (assuming, as usual, that the functions it calls are
correct).

As an exercise, rewrite increment the same way.

12.6 Generalization

In some ways converting from base 60 to base 10 and back is harder than just
dealing with times. Base conversion is more abstract; our intuition for dealing
with times is better.

But if we have the insight to treat times as base 60 numbers, and make
the investment of writing the conversion functions (convertToSeconds and
makeTime), we get a program that is shorter, easier to read and debug, and
more reliable.

It is also easier to add features later. For example, imagine subtracting two
Times to find the duration between them. The naive approach would be to

110 CHAPTER 12. CLASSES AND FUNCTIONS

implement subtraction with borrowing. Using the conversion functions would
be easier and more likely to be correct.

Tronically, sometimes making a problem harder (more general) makes it eas-
ier (fewer special cases, fewer opportunities for error).

12.7 Algorithms

When you write a general solution for a class of problems, as opposed to a specific
solution to a single problem, you have written an algorithm. We mentioned
this word in Chapter 1, but did not define it carefully. It is not easy to define,
so we will try a couple of approaches.

First, consider something that is not an algorithm. When you learned to
multiply single-digit numbers, you probably memorized the multiplication table.
In effect, you memorized 100 specific solutions. That kind of knowledge is not
algorithmic.

But if you were ”lazy,” you probably cheated by learning a few tricks. For
example, to find the product of n and 9, you can write n-1 as the first digit and
10-n as the second digit. This trick is a general solution for multiplying any
single-digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction
with borrowing, and long division are all algorithms. One of the characteristics
of algorithms is that they do not require any intelligence to carry out. They
are mechanical processes in which each step follows from the last according to
a simple set of rules.

In our opinion, it is embarrassing that humans spend so much time in school
learning to execute algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intel-
lectually challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious
thought, are the most difficult to express algorithmically. Understanding natural
language is a good example. We all do it, but so far no one has been able to
explain how we do it, at least not in the form of an algorithm.

12.8 Glossary

pure function: A function that does not modify any of the objects it receives
as parameters. Most pure functions return a result.

modifier: A function that changes one or more of the objects it receives as
parameters. Most modifiers do not have return values.

functional programming style: A style of program design in which the ma-
jority of functions are pure.

incremental development: A way of developing programs starting with a
prototype and gradually testing and improving it.

12.8. GLOSSARY 111

algorithm: A set of instructions for solving a class of problems by a mechanical,
unintelligent process.

112 CHAPTER 12. CLASSES AND FUNCTIONS

Chapter 13

Methods

13.1 Object-oriented features

Python is an object-oriented programming language, which means that it pro-
vides features that support object-oriented programming.

It is not easy to define object-oriented programming, but we have already
seen some of its characteristics:

e Programs are made up of object definitions and function definitions, where
most of the functions operate on specific kinds of objects.

e Each object definition corresponds to some object or concept in the real
world, and the functions that operate on that object correspond to the
ways real-world objects interact.

For example, the Time class we defined last chapter corresponds to the way
people record the time of day, and the operations we defined correspond to the
sorts of things people do with times. Similarly, the Point and Rectangle classes
correspond to the mathematical concept of a point and a rectangle.

So far we have not taken advantage of the features Python provides to sup-
port object-oriented programming. Strictly speaking, these features are not
necessary. For the most part they provide an alternate syntax for doing things
we have already done, but in many cases the alternate syntax is more concise
and more accurately conveys the structure of the program.

For example, in the Time program, there is no obvious connection between
the class definition and the function definitions that follow. With some exam-
ination, it is apparent that every function takes at least one Time object as a
parameter.

This observation is the motivation for methods. We have already seen some
methods, like keys and values, which we invoked on dictionaries. Each method
is associated with a class and is intended to be invoked on instances of that class.

Defining a new method is similar to defining a function, with two differences:

113

114 CHAPTER 13. METHODS

e The method is defined inside the class definition, in order to make the
relationship between the class and the method explicit.

e The first argument of a method is called self, which is a Python keyword
that refers to the object on which the method is invoked.

In the next few sections, we will take the functions from the last two chapters
and transform them into methods. One thing you should realize is that this
transformation is purely mechanical; you can do it just by following a sequence
of steps.

If you are comfortable converting from one form to another, you will be able
to choose the best form for whatever you are doing.

13.2 printTime

In the last chapter we defined a class named Time and a function named
printTime:

class Time:
pass

def printTime(time):
print str(time.hours) + ":" + str(time.minutes) + ":" + str(time.seconds)

To call this function, we passed a Time object as a parameter.

>>> currentTime = Time()

>>> currentTime.hours = 9
= 14

30

>>> currentTime.minutes

>>> currentTime.seconds
>>> printTime(currentTime)

To rewrite printTime as a method, we move the definition into the class defi-
nition and change the name of the parameter to self.

class Time:
def printTime(self):
print str(self.hours) + ":" + str(self.minutes) + ":" + str(self.seconds)

To invoke the new version of printTime, we invoke it on a Time object:
>>> currentTime.printTime ()

Notice that the parameter self is not in the argument list when the method is
invoked on the Time object. Instead, it is replaced implicitly with the object on
which the method is invoked. It is also possible to call the printTime method
with an explicit argument:

>>> Time.printTime(currentTime)

Try each of these and you will see that they do the same thing.

13.3. ANOTHER EXAMPLE 115

13.3 Another example

Let’s convert increment to a method. To save space we will leave out previously
defined functions, but you should keep them in your own version of the class
definition.

class Time:
#previous method definitions here...

def increment(self, secs):
secs = secs + self.seconds

self.hours = self.hours - int(secs / 3600)
secs = secs - self.hours *x 3600
self.minutes = int(secs / 60)

secs = secs - self.minutes * 60
self.seconds = secs

Again, the transformation is purely mechanical: we move the method definition
into the class definition and change the name of the first parameter.
To invoke increment as a method:

currentTime. increment (500)

As an exercise, convert convertToSeconds to a method in the Time
class.

13.4 A more complicated example

The after function is slightly more complicated because it operates on two
Time objects, not just one. We can only convert one of the parameters to self;
the other stays the same.

class Time:
#previous method definitions here...

def after(self, time2):
if self.hour > time2.hour:
return 1
if self.hour < time2.hour:
return 0

if self.minute > time2.minute:
return 1

if self.minute < time2.minute:
return 0

116 CHAPTER 13. METHODS

if self.second > time2.second:
return 1
return 0O

We invoke this method on one object and pass the other as an argument:

if doneTime.after (currentTime) :
print "The bread will be done after it starts."

You can almost read the invocation like English: “If the done-time is after the
current-time, then...”

13.5 Optional arguments

We’ve seen a number of built-in functions that take a variable number of argu-
ments. For example, string.find can take 2, 3 or 4 arguments.

It is also possible to write user-defined functions with optional argument
lists. For example, we can upgrade our own version of find to do the same
thing as string.find.

Here is the original version:

def find(str, ch):
index = 0
while index < len(str):
if str[index] == ch:
return index
index = index + 1
return -1

Here is a new and improved version:

def find(str, ch, start=0):
index = start
while index < len(str):
if str[index] == ch:
return index
index = index + 1
return -1

The third parameter, start, is optional because we have provided a default
value, 0. If we invoke find with only two arguments, we use the default value
and start from the beginning of the string.

>>> find("apple", "p")
1

13.6. THE INITIALIZATION METHOD 117

If we provide a third parameter, it overrides the default:

>>> find("apple", "p", 2)
2
>5> find("apple", "P", 3)
-1

As an exercise, add a fourth parameter, end, which specifies where
we should stop looking.

Warning: This exercise is o bit tricky. The default value of end
should be len(str), but that doesn’t work. The default values are
evaluated when the function is defined, not when it is called. When
find is defined, str doesn’t exist yet, so we can’t find it’s length.

13.6 The initialization method

The initialization method, also called the constructor, is a special method
that is invoked when an object is created. The name of this method is __init__
(two underscore characters, followed by init and then two more underscores).
An initialization method for the time class look like this:

class Time:
def __init__(self, hours=0, minutes=0, seconds=0):
self.hours = hours
self .minutes = minutes
self.seconds = seconds

There is no conflict between the instance variable self .hours and the parameter
hours. Again, the dot operator specifies which variable we are referring to.

When we invoke the Time constructor, we can provide arguments that are
passed along to init.

>>> currentTime = Time(9, 14, 30)
>>> currentTime.printTime ()
>>> 9:14:30

Because the parameters are optional, we can omit them:

>>> currentTime = Time()
>>> currentTime.printTime ()
>>> 0:0:0

or provide only the first

>>> currentTime = Time (9)
>>> currentTime.printTime ()
>>> 9:0:0

118 CHAPTER 13. METHODS

or the first two.

>>> currentTime = Time (9, 14)
>>> currentTime.printTime ()
>>> 9:14:0

As with other methods, it is possible to provide a subset of the parameters by
naming them explicitly:

>>> currentTime = Time(seconds = 30, hours = 9)
>>> currentTime.printTime ()
>>> 9:0:30

13.7 Glossary

method: A function that is defined inside a class definition and which is invoked
on instances of that class.

self: A keyword that refers to the object on which a method is invoked.

initialization method: A special method that is invoked when a new object
is created.

Chapter 14

The case study

For the remainder of the book, we will take an in-depth look at a single program.
Through this case study, called horsebet.py, we will look at proceedural and
object-oriented design in greater detail. We will also learn about additional
tools available to the Python programmer.

14.1 horsebet.py

Programmers: Courtney Gleason and Katherine Smith
Title: horsebet.py

Description: Race Track Game

from random import randint

import os

Constants ##i#

Horse Info:

horses = {}

horses["Thunder"] = """Thunder is a purebred. He is one and a half years old.
Both his parents were Kentuckey Durby winners."""

horses["Mystic"] = """Mystic is a hybrid. She is two years old.

Her mother won the Melbourne Cup at the Victoria Racing Club in Ireland.

Her father never won anything."""

horses["Bullet"] = """Bullet is a purebred. He is three years old.

His mother was a three time national champion for jumping.

Her father won international competitions."""

horses["Golden Stallion"] = """Golden Stallion is a hybrid. He is seven years old.
Both his parents were wild horses."""

119

120 CHAPTER 14. THE CASE STUDY

horses["Morgan"] = """Morgan is a mixed breed. She is fifteen years old.
Her mother is a pony. Her father is a stallion."""

Functions ##i#

def display_horses():
"Print out horse roster."
index =1
for horse in horses.keys(Q):
print str(index) + ". " + horse
index = index + 1

def display_horse_information():
"Displays information about horses."
while 1:
os.system("clear")
print
display_horses()
print

choice = raw_input("Horse name (’q’ to exit): ")
if choice == ’q’: break

if choice in horses.keys():
print
print "Horse: " + choice
print
print horses[choice]
print
else:
print
print "Sorry, horse not found."
print

raw_input ("press <enter> to continue...")
def get_option():
"Print options list and get choice."
print

print " Options: "
print " 1. Information about horses."

14.1. HORSEBET.PY 121

print " 2. Start the race."
print " 3. Reset balance."
print " 4. Quit."

print

choice = input("Choose (1-4): ")
return choice

def display_horse_status(horse_status, track_length):
"Print out the status of the race."
os.system("clear")

print ’/’ + ’-’xtrack_length + ’\\’

for horse in horse_status.keys():
multiply ’#’ by how far the horse has advanced
done = ’#’ * horse_status[horse]

figure out how much is left and multiply ’ ’ by that number
left = > ’ * (track_length - horse_status[horse])

add ’em up to make a progress bar
progress_bar = done + left

also append the horses name to each progress bar
line = ’|’ + progress_bar + ’| ’ + horse
print line

print ’\\’ + ’-’*track_length + ’/’

def get_bet(balance):
"Show balance and get bet."
while 1:
print
print "Your current balance is: $" + str(balance)
print
money = input("How much would you like to bet: $")

if money > balance:

print "You don’t have that much to spend. Try a different amount
elif money < 1:

print "Please bet more than that . . . "
else:

return money

122 CHAPTER 14. THE CASE STUDY

def get_horse():
"Return horse name."
while 1:
print "Okay, now which horse do you think is going to get first place?"
display_horses()
print

choice = raw_input("Horse name: ")

if choice in horses.keys():
return choice

else:
print "Sorry, horse not found."

def get_winner(horse_status, track_length):
"Figure out the finishline horses, and choose one for winner."

make a list of all the horses at the finishline
winners = []
for horse in horse_status.keys():
if horse_status[horse] == track_length:
winners.append (horse)

we only want ONE winner to make life easier ;-)

randomly slice the winners list for a single winner
num_of_winners = len(winners)

random_num = randint(0, num_of_winners - 1)

winner = winners[random_num]

return winner

def race():
"Do the race simulation."
track_length = 25
horse_status = {} # status for each horse during race

#setup horse status dictionary
for horse in horses.keys():
horse_status[horse] = 0 #each horse starts at 0O

#start the race!
leading_horse = 0

14.1. HORSEBET.PY 123

raw_input ("press <enter> to begin...")
display_horse_status(horse_status, track_length)
keep’em racing untill one reaches the end of the track
while leading_horse < track_length:
for horse in horse_status.keys():
current_location = horse_status[horse]

you can make this random number thing more sophisticated by assigning

certain properties to each horse and have it # somehow affect the number
generated; as a result affecting the horses performance.

moved = randint(0,1)

new_location = current_location + moved

the horse has officialy made it’s move
horse_status[horse] = new_location
keep track of leading horse
if horse_status[horse] > leading_horse:
leading_horse = horse_status[horse] # so we know when to stop the race

raw_input ("press <enter> to continue...")
display_horse_status(horse_status, track_length)

winner = get_winner (horse_status, track_length)
return winner

def simulate_race(balance):
"The main race function."
os.system("clear")

bet_amnt get_bet (balance)
bet_horse = get_horse()
race_result = race()

if bet_horse == race_result:

print "Your horse won the race!"

print "Horray for " + race_result + "!"

balance = balance + bet_amnt * (len(horses) - 1)
else:

print "Sorry, you lose."

print race_result + " is the winner."

balance = balance - bet_amnt

print "Your new balance is: " + str(balance)

124 CHAPTER 14. THE CASE STUDY

raw_input ("press <enter> to continue...")

return balance

def main():
os.system("clear")

print

print " Welcome To A Day At The Races"
print "--——---—————— "
print "by Courtney Gleason & Katherine Smith"
print

balance = 1000

while 1:
choice = get_option()
os.system("clear")
if choice ==
display_horse_information()
elif choice ==
balance = simulate_race(balance)
elif choice == 3:
balance = 1000
elif choice ==
break
os.system("clear")

main()

14.2 Glossary

case study:

Appendix A

GNU Free Documentation
License

Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially
or noncommercially. Secondarily, this License preserves for the author and pub-
lisher a way to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

125

126 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

A.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
whose contents can be viewed and edited directly and straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, IXTEX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML designed
for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A.2. VERBATIM COPYING 127

A.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

A.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the copies
in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts
on the front cover, and Back-Cover Texts on the back cover. Both covers must
also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard net-
work protocols. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Doc-
ument, well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

128 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

A.4 Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

e Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

e List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has less than five).

e State on the Title page the name of the publisher of the Modified Version,
as the publisher.

e Preserve all the copyright notices of the Document.

e Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

e Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

e Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

e Include an unaltered copy of this License.

e Preserve the section entitled “History”, and its title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

e Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network

A.5. COMBINING DOCUMENTS 129

location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

e In any section entitled “Acknowledgements” or “Dedications”, preserve
the section’s title, and preserve in the section all the substance and tone
of each of the contributor acknowledgements and/or dedications given
therein.

e Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

e Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

e Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties — for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

A.5 Combining Documents
You may combine the Document with other documents released under this Li-

cense, under the terms defined in section 4 above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the

130 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled “History” in
the various original documents, forming one section entitled “History”; likewise
combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

A.6 Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

A.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a com-
pilation is called an “aggregate”, and this License does not apply to the other
self-contained works thus compiled with the Document, on account of their be-
ing thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggregate,
the Document’s Cover Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear on covers around
the whole aggregate.

A.8. TRANSLATION 131

A.8 Translation

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License provided that you also include the original English version of
this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

A.9 Termination

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

A.10 Future Revesions of This Licence

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http:///www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after
the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU

132 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

Free Documentation License, Version 1.1 or any later version pub-
lished by the Free Software Foundation; with the Invariant Sec-
tions being LIST THEIR TITLES, with the Front-Cover Texts being
LIST, and with the Back-Cover Texts being LIST. A copy of the li-
cense is included in the section entitled “GNU Free Documentation
License”.

If you have no Invariant Sections, write “with no Invariant Sections” instead
of saying which ones are invariant. If you have no Front-Cover Texts, write
“no Front-Cover Texts” instead of “Front-Cover Texts being LIST”; likewise for
Back-Cover Texts.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

Index

algorithm, 8, 111 concatenation, 14
algorithms, 110 conditional branching, 31, 39
aliases, 82 conditional execution, 31
aliasing, 79 conditional statement, 39
ambiguity, 6 constructor, 99, 103
argument, 19, 29 counting, 85
arguments, 25
assignment, 10, 17, 53 data types
multiple, 90, 98 compound, 65, 99
multiple , 63 dictionaries, 91
immutable, 89
base case, 39 long integers, 96
block, 32 tuples, 89
body, 32 user-defined, 99
loop, 55 dead code, 42, 52
boolean expression, 52 debugging, 4, 8
boolean expressions, 46 deterministic, 88
boolean functions, 47 development methods
bug, 4, 8 incremental development, 43
byte code, 8 development plan, 63
dictionaries, 89, 91
case study, 124 key-value pairs, 91
class, 99, 103 keys, 91
classes, 99 methods, 93
coercion, 20, 29 operations on, 92
comment, 17 dictionary, 98
comments, 15 methods, 93
comparison operator, 52 operations, 92
compile, 2, 8 Doyle, Arthur Conan, 5
composition, 15, 17, 22, 45
compound data types, 65, 99 element, 82
compound statement, 39 elements, 73
compound statements, 32 encapsulate, 63
body, 32 encapsulation, 58
header, 32 error
statement block, 32 logic, 4
concatenate, 17 run-time, 4

133

134

syntax, 4
escape sequence, 63
exception, 4
executable, 8
expression, 17

boolean , 52
expressions, 12

boolean, 46

float, 9
flow of execution, 25, 29
for loop, 66
formal language, 5, 8
funcitons
parameters, 80
function, 22, 29
definition, 22
function call, 29
function calls, 19
function definition, 22, 29
function types
modifier, 107
functional programming style, 111
functions, 62, 105
arguments, 25
boolean , 47
calling, 19
composition, 22, 45
math, 21
parameters, 25
pure, 106
recursive, 36
tuples as return values, 91

generalization, 58, 109
generalize, 63
guardian, 52

hello world, 7

high-level language, 1, 8
hint, 98

histogram, 88
histograms, 83

Holmes, Sherlock, 5

immutable type, 98

incremental development,

111

index, 82
infinite loop, 55, 63
infinite recursion, 36, 39
initialization method, 118
instance, 103
instance variable, 103
instance variables, 100
instantiate, 103
int, 9
integer division, 13, 17
integers

long , 96
interpret, 2, 8
invoke, 98
invoking methods, 93
iteration, 53, 54, 63

keyword, 11, 17
keywords, 12

language
formal, 5
high-level, 1
low-level, 1
natural, 5
programming, 1
safe, 4

Linux, 5

list, 82

list operations, 77

list traversal, 82

lists, 73
as parameters, 80
cloning, 80
elements, 74
length, 75
nested, 73, 81
operations, 77
slices, 77
traversal, 75

literalness, 6

local variable, 29

local variables, 26, 60

logic error, 4

INDEX

43, 52,

INDEX

logical error, 8
logical operator, 52
logical operators, 46
long integers, 96
loop, 55, 63
body, 55, 63
for loop, 66
infinite, 55
traversal, 66
variable, 63
while, 54
loop traversal, 66
low-level language, 1, 8

math functions, 21

method, 93, 98, 118
invocation, 93

methods, 105

methods on dictionaries, 93

modifier, 107, 111

module, 21, 29

modulus operator, 31, 39

multiple assignment, 53, 63, 90, 98

mutability, 89

mutable type, 98

natural language, 5, 8
nested list, 82
nested lists, 81
nesting, 34, 39
None, 42, 52
numbers

random, 83

object, 82, 103
object code, 8
object references

aliasing, 79
objects, 99
operand, 17
operands, 12
operations

on lists, 77
operations on dictionaries, 92
operator, 17

comparison, 52

135

logical , 52
operators, 12

for lists, 77

logical , 46

modulus, 31
order of operations, 14

parameter, 29
parameters, 25
lists, 80
parse, 6, 8
pass, 103
poetry, 6
portability, 8
portable, 1
precedence, 17
rules, 17
problem-solving, 8
program
development, 63
program development
encapsulation, 58
generalization, 58
programming language, 1
prompt, 38, 39
prose, 6
pseudorandom, 88
pure function, 111
pure functions, 106

random numbers, 83
recursion, 34, 36, 39, 47
base case, 36
infinite, 36
redundancy, 6
return value, 19, 29, 52
return values, 41
tuples, 91
rules of precedence, 14, 17
run-time error, 4, 8

safe language, 4
scaffolding, 52
self, 118
semantics, 4, 8
sequence, 82

136

sequences, 73
slices, 77
source code, 8
stack diagram, 29
stack diagrams, 27
state diagram, 11, 17
statement, 3, 17
assignment, 10, 53
block, 32
body, 32
while, 54
statements
compound, 32
string, 9
length, 66
string operations, 14
strings, 65
syntax, 4, 8
syntax error, 4, 8

tab, 63
table
two-dimensional, 57
tables, 55
temporary variable, 52
temporary variables, 42
traversal, 66
tuple, 98
tuples, 89, 91
type, 9, 17
float, 9
int, 9
string, 9
type coercion, 20
type conversion, 19
types
coercion, 20
comparing, 51
conversion, 19

underscore character, 11
user-defined data types, 99

value, 9, 17
values
tuples, 91

INDEX

variable, 10, 17
temporary , 52
variables
local, 26, 60
temporary, 42

while statement, 54

